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1. Introduction

Statisticians have developed several methods for
comparing hypotheses and for estimating param-
eters from data. Of these, the method of maxi-
mum likelihood is remarkable both for its power
and for its flexibility. Yet it is seldom covered in
introductory statistics courses because it is hard
to present either as a canned computer program
or within a cookbook-style textbook. It is much
too flexibile for that.

In this document, I will assume that you know
a little about probability. If you need to brush
up, consult Just Enough Probability, which you
can find at http://content.csbs.utah.edu/

~rogers/pubs/index.html. The method is eas-
iest to describe by example, so I begin with the
simplest experiment I can imagine.

2. Tossing a coin once

You are given a (possibly unfair) coin, and you
toss it once. Since the probability of tossing
heads is unknown, let us call it p. Let x rep-
resent the number of heads observed (either zero
or one). If the coin comes up heads, then x = 1
and you have observed an event with probability
p. On the other hand, if the coin comes up tails
then x = 0 and you have observed an event with
probability 1− p. In symbols,

Pr[x = 1] = p
Pr[x = 0] = 1− p

}
(1)
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2.1. The likelihood function

If we have just tossed a coin, then we will know
the value of x, but we may not be sure about
p. Consequently, we can think of formula 1 as a
function of this unknown parameter value. This
is the reverse of the usual situation in probability
theory, where the parameters are taken as given
and the outcomes are allowed to vary. To distin-
guish these two situations, equation 1 is called a
probability distribution if taken as a function of
the outcome variable x, but is called a likelihood
if taken as a function of its parameter, p. For
example, if we toss one coin and observe heads,
then we have observed an event of probability p.
The likelihood function in this case is

L(p) = p

On the other hand, if the coin had come up tails,
the likelihood function would be

L(p) = 1− p

The likelihood function is useful because it
summarizes the information that the data pro-
vide about the parameters. To estimate a pa-
rameter, we make use of the principle of maxi-
mum likelihood:

Principle 1. To estimate a parameter, the
method of maximum likelhood chooses the pa-
rameter value that makes L as large as possible.

•EXAMPLE 1

If the coin came up heads, then L(p) = p. This function
reaches its maximum value when p = 1. The maximum
likelihood estimate of p is therefore p̂ = 1.

(Here, p̂ is pronounced “pee-hat.” It is the con-
ventional symbol for a maximum likelihood esti-
mate of p.)
•EXAMPLE 2

If the coin came up tails, then L(p) = 1− p and p̂ = 0.
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3. Tossing the coin twice

Had we tossed the coin twice, there would have
been four possible ordered outcomes:

Table 1: Ordered outcomes from two tosses of a
coin

Outcome
toss 1 toss 2 Probability

heads heads p2

heads tails p(1− p)
tails heads p(1− p)
tails tails (1− p)2

It is often inconvenient to keep track of the out-
come of each toss, so the table above is usually
abbreviated as:

Table 2: Unordered outcomes from two tosses of
a coin

x Probability

2 p2

1 2p(1− p)
0 (1− p)2

•EXAMPLE 3

If you observe one head in two tosses, then L(p) =
2p(1− p) and p̂ = 1/2.
•EXAMPLE 4

If you observe two heads in two tosses, then L(p) = p2

and p̂ = 1.

4. Tossing the coin several times

In the general case, the coin is tossed N times
yielding x heads and N−x tails. The probability
of observing x heads in N tosses is given by the
binomial distribution function:

Pr[x;N, p] =

(
N

x

)
px(1− p)N−x (2)

In this expression, the notation
(N
x

)
is pro-

nounced “N choose x” and represents the num-
ber of ways of choosing x heads out of N tosses.
If you’re unfamiliar with this formula, you can
read more about it in Just Enough Probability.
•EXAMPLE 5

In the case of two tosses, table 1 shows two ways of

getting a single head. Consequently,
(
2
1

)
= 2, and equa-

tion 2 gives Pr[1; 2, p] = 2p(1 − p), in agreement with
the second row of table 2.

To understand how equation 2 works in the
case of three tosses (N = 3), consider all the
outcomes that can result from three tosses of a
coin:

toss 1 toss 2 toss 3 x

H H H 3
H H T 2
H T H 2
H T T 1
T H H 2
T H T 1
T T H 1
T T T 0

Note that there is only one outcome in which
H is absent—only one, in other words, in which
x = 0. This implies that

(3
0

)
= 1.

?EXERCISE 4–1 Use the table to figure out the
values of

(3
1

)
,
(3
2

)
, and

(3
3

)
.

Equation 2 becomes a likelihood function if we
think of it as a function of p rather than x. For
example, if we toss three coins and observe one
head, the likelihood function is

L(p) = 3p(1− p)2

To estimate p, the method of maximum likeli-
hood chooses the value of p that maximizes the
likelihood. The value of p that maximizes L will
also maximize lnL, so we can work with either
function. It is often more convenient to work
with lnL rather than with L itself. If x = 1 and
N = 3, the log likelihood function is

lnL(p) = ln 3 + ln p+ 2 ln(1− p) (3)

Figure 1 graphs lnL for several coin tossing ex-
periments in each of which 1/3 of the tosses come
up heads. Each curve reaches a maximum at
roughly p = 1/3. Thus, the maximum likelihood
estimator must be close to 1/3 in each case. We
can see this much by studying the graph.

The curves in figure 1 also provide information
about the precision of the estimates: The like-
lihood function is flat when the sample size is
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Figure 1: Log likelihood functions for binomial
experiments in which x/n = 1/3. Each curve is
for a different value of n. The numbers next to
each curve show the value of n.

small, but is narrow and peaked when the sam-
ple size is large. This is a crucial point. It means
that whenN is large, our estimate of p is unlikely
to be far from 1/3, the true value. The larger the
data set, the stronger this claim becomes.

5. A maximum likelihood estimator
for p

To obtain an estimator, it is convenient to work
with the logarithm of L rather than with L itself.
Taking the log of equation 2 gives

lnL(p) = ln

(
N

x

)
+x ln p+(N−x) ln(1−p) (4)

The maximum likelihood estimator of p is the
value of p that makes lnL(p) as large as possible.
This estimator turns out to be

p̂ = x/N (5)

in agreement with the examples above where
x/N = 1/3.

?EXERCISE 5–1 Verify equation 5.

How well does this formula work? To find out,
I analyzed data from computer simulations in

0 p

p̂

n = 1
..............................................................................................................................

..............................................................................................................................
..............................................................................................................................

..............................................................................................................................
.......................................

•
•n = 10

.....................................................................................................................................
....................................

..............
..............
..............
..............
.............
..........
..........
..........
..........
..........
..........
..........
...........
............
............
............
............
............
.......................................................................................................................................................................

• • • •
•

•

•
•

•

n = 100

................................................
.............
........
.........
........
........
.........
........
........
.........
........
........
........
........
.........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
..........
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................••••••••••

••
•
•

•

•

•

•

•

•••
•

•

•

•

•

•

•
•
•••••••

Figure 2: Frequency distributions of p̂ when p =
0.8.

which p = 0.8. The results are shown in figure 2
and cover three values of N . For each value of
N , I generated thousands of simulated data sets
and estimated p from each data sets. The distri-
butions of these estimates are shown in figure 2.
First look at the distribution for N = 100. In
that case, the distribution is centered narrowly
around the true parameter value, p = 0.8. Few
of the simulated estimates are far from the true
value, so we could have high confidence in an es-
timate from 100 real coin tosses. Now look at the
distribution for N = 10. In that case, the distri-
bution is spread much more widely—it would be
easy to find estimates that differ from the true
value by 0.2 or so. With a sample of 10 we get
only a crude idea of the value of p. Finally, look
at the distribution for N = 1. Here the distribu-
tion goes from wall to wall. A single toss of the
coin would tell little about p.

Clearly, equation 5 gives estimates that vary
in accuracy, and the accuracy depends heavily on
the size of the sample. We need a way to mea-
sure this effect. The standard method involves
something called the sampling variance.
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Table 3: Results of 30 computer experiments,
each simulating 20 tosses of an unfair coin. See
text for details.

Results p̂ (p̂− p)2

1 11011111101101111111 0.85 0.0025
2 11111001101111111111 0.85 0.0025
3 01100111111110111111 0.80 0.0000
4 10111110111101101111 0.80 0.0000
5 01101111111111101101 0.80 0.0000
6 10111111111100110111 0.80 0.0000
7 11111101101111001111 0.80 0.0000
8 01111111111111111110 0.90 0.0100
9 10111101111111010101 0.75 0.0025
10 11110111001111111111 0.85 0.0025
11 11111111101111110111 0.90 0.0100
12 11011101110011111110 0.75 0.0025
13 11111110111111110101 0.85 0.0025
14 01110111011101101001 0.65 0.0225
15 11001111011011110010 0.65 0.0225
16 11101111111111111111 0.95 0.0225
17 10101111101111110111 0.80 0.0000
18 01111110001110111011 0.70 0.0100
19 11110111101111101111 0.85 0.0025
20 11111111111111100011 0.85 0.0025
21 01111100111111111001 0.75 0.0025
22 11111111111111111111 1.00 0.0400
23 11111111111110101110 0.85 0.0025
24 01100111011111111111 0.80 0.0000
25 11111111111101111111 0.95 0.0225
26 10011110001111111111 0.75 0.0025
27 11111111111110111111 0.95 0.0225
28 10111111111110011101 0.80 0.0000
29 11101111101011111010 0.75 0.0025
30 11111011111111111111 0.95 0.0225

6. Sampling variance, standard error,
and confidence intervals

Table 3 shows the results of 30 computer exper-
iments, each simulating 20 tosses of an unfair
coin. On each toss, we observe “1” with prob-
ability p = 0.8 and “0” with probability 1 − p.
For each experiment, p̂ is the mean as estimated
by equation 5. These estimates vary, reflecting
the relatively small sample size in each experi-
ment. The variance of the estimates about their
expected value, p, is called the sampling vari-
ance. With these data, the sampling variance is
estimated by

v =
1

30

30∑
i=1

(p̂i − p)2 = 0.0078 (6)

It is usually easier to interpret the square root of
the sampling variance, which is called the stan-
dard error. With these data, the standard error
is estimated by

S.E. =
√
v = 0.089

The standard error can be thought of as the size
of a “typical” error.

Calculations such as these are easy when one
has the luxury of repeating an experiment many
times. Yet that is seldom the case. Fortunately,
it is possible to estimate the sampling variance
even when the experiment has been performed
only once.

6.1. Using likelihood to estimate the sam-
pling variance

On page 2, I pointed out that large samples gen-
erate narrow likelihood surfaces that are sharply
curved at the peak. Small samples, on the other
hand, generate broad flat ones with little cur-
vature anywhere. This relationship underlies a
remarkable formula, which makes it possible to
estimate the sampling variance of a maximum
likelihood estimator from a single data set. The
sampling variance is approximately

v ≈ −1

/
E

{
d2 lnL

dp2

}
(7)
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For example, with equation 2 the first and second
derivatives are

∂ lnL

∂p
=

x

p
− N − x

1− p
∂2 lnL

∂p2
= − x

p2
− N − x

(1− p)2

The expected value of x is Np and that of N −x
is N(1− p). Thus,

E

{
∂2 lnL

∂p2

}
= −Np

p2
− N(1− p)

(1− p)2

= − N

p(1− p)
Plugging this into equation 7 gives the sampling
variance for our estimate of p:

v =
p(1− p)
N

This expresses the sampling variance of p̂ in
terms of the unknown parameter p. To use this
answer with data, we would have to use p̂ as an
approximation for p. Thus, in practice the stan-
dard error is estimated as

v =
p̂(1− p̂)
N

(8)

•EXAMPLE 6

For the data in table 3, p = 0.8 and N = 20. Thus,
v = 0.8 × 0.2/20 = 0.008, very close to the value
(0.0078) estimated in equation 6.

It often turns out to be difficult to take the ex-
pectation of the second derivative. In such cases,
the usual practice is to approximate equation 7
by

v ≈ −1

/
d2 lnL

dp2

∣∣∣∣∣
p=p̂

(9)

Instead of taking the expectation of the second
derivative, one simply evaluates it at the point
where the parameter is equal to its estimate.
With the example above,

d2 lnL

dp2

∣∣∣∣∣
p=p̂

= − N

p̂(1− p̂)

so equations 9 and 7 both give the answer shown
in equation 8.
•EXAMPLE 7

When p̂ = 0.8 and N = 100, the estimated sampling
variance is v = 0.8× 0.2/100 = 0.0016.

?EXERCISE 6–1 Use equation 9 to estimate the
sampling variance for each of the first five exper-
iments in table 3.

?EXERCISE 6–2 Use equations 7 and 9 to ob-
tain a formula for the sampling variance of p̂,
which estimates the probabity of heads in a bino-
mial experiment. Compare your answer to equa-
tion 8.

6.2. Standard error

The standard error, like the sampling variance,
is an estimate of the error in an estimate. The
larger the standard error of an estimate, the less
acurrate that estimate is likely to be. The two es-
timates of error are closely related: the standard
error is the square root of the sampling variance.

6.3. Confidence interval

What is a 95% confidence interval? Since
a confidence interval is calculated from data, and
the data themselves are random, the confidence
interval is a random quantity too. If we repeat
some experiment again and again and calculate
a confidence interval from each fresh set of data,
we will likely get a different confidence interval
each time. The procedure for constructing con-
fidence intervals is devised so that, on average,
95% of the intervals we construct will contain
the true parameter value.

If a data set consists of a large number of inde-
pendent observations, the maximum likelihood
estimates that we obtain from it will have sam-
pling distributions that are approximately nor-
mal. Consequently, normal distribution theory
is usually used to place approximate confidence
intervals around maximum likelihood estimates.
In a normal distribution, 95% of the probability
mass is within 1.96 standard deviations of the
mean. Consequently, a 95% confidence interval
for some parameter θ is the interval between

θ̂ − 1.96S.E. and θ̂ + 1.96S.E.

In words, the lower bound of the interval is 1.96
standard errors below the estimate and the up-
per bound is 1.96 standard errors above.
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Figure 3: Normal approximation to sampling dis-
tribution. The solid line shows the normal approx-
imation to the sampling distribution of p̂ in the
case where p = 0.8 and N = 100. The bullets
are copied from the the corresponding curve in fig-
ure 2, and show the true sampling distribution of
p̂ as estimated by computer simulation.

•EXAMPLE 8

Use the data from example 7 to calculate the standard
error and the 95% confidence interval for p̂.
◦ANSWER

In that example p̂ = 0.8 and the sampling variance was
0.0016. The standard error is thus

√
0.0016 = 0.04,

and the 95% confidence interval is [0.7216, 0.8784].

In this example, the sampling distribution of
p should be normal with mean 0.8 and standard
deviation 0.04. This distribution is shown as a
solid line in figure 3. The bullets in the figure
are remarkably close to the solid line, but they
were not drawn using the normal approximation
to the sampling distribution. They are simply
copied from figure 2. They show that the nor-
mal distribution does a remarkable job of ap-
proximating the sampling distribution of p̂.

?EXERCISE 6–3 Use the first experiment in ta-
ble 3 to calculate the standard error and the 95%
confidence interval for p̂.

The normal approximation is less useful when
the likelihood function is asymmetric in the
neighborhood of the estimate [2]. If it falls
steeply on one side but only slowly on the other,
the approximation is likely to be poor. This
problem is particular severe in the case with
which we started: that of tossing a coin a sin-
gle time. In that case, the likilihood function
reaches its maximum at p = 0 or p = 1. Since
these are the smallest and largest permissible
values, the likelihood function cannot be sym-
metric about either of them.

7. Likelihood-ratio tests

7.1. Nested models

Likelihood is also used to test one statistical
model against another. The method method
works for models that are “nested.” In other
words, it works if one model is a restricted ver-
sion of another.

For example, suppose we suspect that two
samples are drawn from the same normal dis-
tribution. This is a special case of a more gen-
eral hypothesis, which assumes that the two dis-
tributions are normal but says nothing about
whether they are the same. The first hypothesis
differs from the second only in asserting that the
parameters of the two normal distributions are
equal. In other words, the first is a restricted
version of the second, and the two are said to
be nested. For this reason, we can test the first
against the second using a likelihood-ratio test.

Or again, suppose we have data on migration
among a set of villages, and we wish to know
whether migration is symmetric in the sense that
the rate from any village to another equals the
opposing rate. One alternative might assume no
relationship between the rates in opposing direc-
tions. The first hypothesis is a special case of the
second, so the two are nested.

On the other hand, we might be interested in
a different alternative hypothesis, which holds
that the rate in one direction is the reciprocal
of the opposing rate. If rij is the rate from vil-
lage i to village j, then the original hypothesis
(symmetric migration) holds that rij = rji for
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all village pairs. This new hypothesis holds that
rij = 1/rji. Neither hypothesis is a restricted
version of the other, so the two are not nested,
and we cannot use a likelihood-ratio test. (We
could however evaluate them using methods such
as the Akaike information criterion [1].)

7.2. How to perform the test

Suppose H0 and H1 are hypotheses and that the
second nested within the first. We wish to test
H1 against H0. The procedure involves the fol-
lowing steps:

1. For each hypothesis, build a model that will
allow you to calculate the likelihood given
the data and specific assumptions about pa-
rameter values.

2. Calculate maximum-likelihood estimates of
all parameters under each model.

3. Substitute these estimates into the likeli-
hood functions to obtain L0 and L1, the
maximal likelihood under each model.

4. Calculate Z = −2 ln(L1/L0).

5. If the sample is large and H0 is correct,
Z is approximately a chi-squared random
variable with degrees of freedom equal to
the number of constraints imposed by H1.
Calculate the probability P that a random
value drawn from this distribution would ex-
ceed Z.

6. Reject H1 if P < α, where α is the signifi-
cance level chosen by the analyst (often 0.05
or 0.01).

7.3. Counting constraints

To perform this test, one needs to count the con-
straints involved in reducing H1 to H0. For ex-
ample, in the first example above, H1 assumed
that two normal distributions (let’s call them A
and B) were the same. The normal distribution
has two parameters (the mean µ and the vari-
ance σ2), so there are two constraints: µA = µB,

and σ2A = σ2B. In general, constraints are de-
scribed by equations, and the number of con-
straints equals the number of equations.

In the second example, the hypothesis of sym-
metric migration involved constraints of the form
rij = rji, where rij is the rate of migration from
village i to village j. We have a constraint of
this form for each pair of villages, so the number
of constraints equals the number of such pairs.

Sometimes these counts can be confusing.
Consider a genetic locus with three alleles (three
variants) labeled A1, A2, and A3. If we have
samples from two populations, we might want
to know whether the two had different allele fre-
quencies. Let H1 represent the hypothesis that
the two populations have equal frequencies and
H0 the hypothesis that makes no assumption
about these frequencies. The first hypothesis
is nested within the second, so we can use a
likelihood-ratio test. How many constraints are
there? Let pij represent the frequency of allele i
in population j. H1 differs from H0 in assuming
that

p11 = p12 (10)

p21 = p22 (11)

p31 = p32 (12)

There are three equations here, so one might con-
clude that there were three constraints. Actu-
ally, there are only two. Within each population,
the allele frequencies must sum to 1, so the fre-
quency of the third allele can be written in terms
of the other two: p3i = 1− p1i − p2i. Using this
fact, we can rewrite the third equation as

1− p11 − p21 = 1− p12 − p22

This is guaranteed to be true by virtue of equa-
tions 10 and 11, so equation 12 adds no ad-
ditional information. There are only two con-
straints.

7.4. Example

Consider the following two samples of data.

x = [0, 1, 1, 1, 0, 0, 1, 0, 1, 1]

y = [1, 1, 0, 1, 1, 1, 1, 1, 0, 1]
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Is it plausible to suppose that both were drawn
from a binomial distribution with the same pa-
rameters? To find out, we consider two hypothe-
ses: H0 (which assumes that the two binomial
distribution are the same) and H1 (which makes
no such assumption). We’ll use a likelihood-ratio
test to test H0 against H1. The binomial has
two parameters, N and p. We’ll need to esti-
mate p, but we don’t need to estimate N because
its value was determined by the experiment that
generated the data. Consequently, H0 involves
one constraint: it assumes that px = py, where
px and py are the probabilities of observing a “1”
in a single trial of the binomial experiment.

For H0, we have N = 20 observations from the
same distribution. To estimate p, we use equa-
tion 5, which gives p̂ = 14/20 = 0.7. Data set x
had 6 “1”s, so equation 2 gives its likelihood as
Lx0 = Pr[6; 10, 0.7] = 0.2001209. Data set y had
8 “1”s, so its likelihood is Ly0 = Pr[8; 10, 0.7] =
0.2334744. Our hypothesis assumes that the two
data sets were drawn independently, so the like-
lihood of the whole data set is the product of Lx

and Ly. In other words, the likelihood under H0

is

L0 = Lx0Ly0 = 0.04672313.

For H1, we estimate px and py separately for
data sets x and y. This gives p̂x = 0.6 and
p̂y = 0.8. The corresponding likelihoods are
Lx1 = Pr[6; 10, 0.6] = 0.2508227 and Ly1 =
Pr[8; 10, 0.8] = 0.3019899. The product of these,

L1 = Lx1Ly1 = 0.0757459,

is the likelihood under H1. Note that L0 < L1.
This is always the case, becauseH0 is a restricted
version of H1, and those restrictions reduce like-
lihood. Given these values, we can calculate

Z = −2 log(L0/L1) = 0.9662903

If H0 were true, Z would be a chi-squared ran-
dom variable with one degree of freedom, be-
cause H0 imposes one constraint.

Is this large enough to reject H0? There are
several ways to find out. In the back of most in-
troductory statistics books, there are tables de-
scribing the cumulative values of the chi-squared

distribution function. One can also get the an-
swer from any number of computer packages.
Here is the calculation in the R statistical lan-
guage:

> 1-pchisq(0.9662903, 1)

[1] 0.3256071

My command is in the first line following R’s
prompt character (>). The second line contains
the answer. Here is the same calculation in
Maple:

> with(Statistics):

> X := RandomVariable(ChiSquare(1)):

> 1 - CDF(X, 0.9662903);

0.3256071127

Both packages give the same answer: 0.326. This
answer tells us that there is a substantial proba-
bility (nearly 1/3) of observing two data sets as
different as ours even if both were drawn from
the same binomial distribution. Consequently,
we cannot reject hypothesis H0.

Appendix A. Answers to Exercises

?EXERCISE 4–1
(3
1

)
= 3,

(3
2

)
= 3, and

(3
3

)
= 1.

?EXERCISE 5–1 We want the value of p that
makes L as large as possible. This value will also
maximize the value of lnL (since lnL increases
motonically with L), so we can work either with
L or with lnL. We will get the same answer in
either case. It is easiest to work with lnL, so let
us focus on that. Taking its derivative gives

d lnL/dp = x/p− (N − x)/(1− p)

Take a close look at this expression. If x = 0,
this derivative is negative whatever the value of
p. In other words, lnL is a decreasing function
of p, and p̂ = 0. If x = 1, the derivative is always
positive, and p̂ = 1. When 0 < x < N , the lnL
function reaches a maximal value at the value of
p that makes the derivative equal 0. To find this
maximal value, set d lnL/dp = 0 and solve for p.
This gives equation 5.

We also need to make sure that this is indeed
a maximum point, rather than a minimum or
a saddle point. There are several ways to do
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this. For me, it is easiest simply to examine the
expression for d lnL/dp. The first term divides
by p, so it will be very large when p ≈ 0. Since
this term is positive, d lnL/dp > 0 when p is
small. For similar reasons, the second term will
be large in magnitude when p ≈ 1. Since this
term is negative, d lnL/dp < 0 when p is large.
This implies that as p increases from 0 to 1, d lnL
first increases and then decreases. The point at
which the derivative is zero can only be a local
maximum. If you find this argument hard to
follow, then use the second derivative test: if the
second derivative of lnL is negative, then p̂ is a
local maximum. Here is some Maple code that
does this calculation:

> # Define lnL

> lnL := Const + x*log(p)

> + (N-x)*log(1-p);

lnL := Const + x ln(p)

+ (N - x) ln(1 - p)

> # Solve d lnL / dp = 0 to find the maximum.

> phat := solve(diff(lnL, p) = 0, p);

phat := x/N

> # Calculate the second derivative.

> simplify(subs(p=phat, diff(lnL, p, p)));

3

N

----------

(-N + x) x

If x < N , the entire expression is negative and
p̂ is at a local maximum. Thus, in this case p̂
is a maximum likelihood estimator of p. When
x = N , however, the second derivative is unde-
fined, so the second-order condition provides no
information.
?EXERCISE 6–1 The estimated sampling vari-
ance is 0.006375 for experiments 1 and 2, and
0.008 for experiments 3, 4, and 5.
?EXERCISE 6–2 Begin by defining lnL and phat

as in example 5–1 above. Then calculate the
second derivative of lnL.

> # d2 is the 2nd derivative of lnL with

> # respect to p

> d2 := diff(lnL, p, p);

x N - x

d2 := - ---- - --------

2 2

p (1 - p)

To take the expectation of this expression, re-
place x with its expected value Nx.

> # Ed2 is the expectation of d2

> Ed2 := simplify(subs(x = N*p, d2));

N

Ed2 := ----------

p (-1 + p)

Students who have studied probability theory
will recognize that this substitution is justified
because d2 is a linear function of the random
variable x. The rest of you must take it on faith.
Now, equation 7 gives

> # v1 is the sampling variance of phat

> v1 := -1/Ed2;

p (-1 + p)

v1 := - ----------

N

To use this formula with data, we would have to
substitute p̂ for p, and this would give equation 8.

The next step is to use equation 9, which gives

> # v2 is also the sampling variance of phat

> v2 := simplify(-1 / subs(p=phat, d2));

(-N + x) x

v2 := - ----------

3

N

But x = Np̂, so this can be re-expressed as:

> phat := ’phat’;

phat := phat

> v2 := simplify(subs(x = N*phat, v2));

(-1 + phat) phat

v2 := - ----------------

N

This is also equivalent to equation 8.
?EXERCISE 6–3 In that example p̂ = 0.85 and
the sampling variance was 0.006375. The stan-
dard error is thus

√
0.006375 ≈ 0.08, and the

95% confidence interval is [0.69, 1.01].
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