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Abstract

This paper reviews statistical methods for inferring population his-
tory from mitochondrial mismatch distributions and extends them to the
case of geographically structured populations. Inference is based on a
geographically structured version of the coalescent algorithm that allows
for temporal variation in population size, in the number of subdivisions,
and in the rate of migration between subdivisions. Confidence regions
are inferred under several models of population history. If the pattern
in mitochondrial DNA reflects population growth rather than selection,
then the confidence regions reject the multiregional hypothesis of modern
human origins more strongly than has previously been possible. They do
not reject the replacement hypothesis.

Keywords coalescent, mitochondrial DNA, modern human origins, mismatch
distribution, population structure

1 Introduction

A mitochondrial mismatch distribution is a histogram that describes variation
in the amount of genetic difference between pairs of individuals in a sample. In
several recent articles, my coauthors and I have suggested that the mismatch
distribution is rich in information about population history [19, 17, 6, 21, 5,
18]. This work suggests that the human population experienced a population
explosion during the late Pleistocene, some 30,000 to 130,000 years ago.

This work has encountered two kinds of criticism. Some have objected to
our use of a theory describing pairs of individuals when our data consist not of
pairs but of much larger samples. Others have objected that when populations
are subdivided, the mismatch distribution may not contain much information
about population history, and methods such as ours should not work [15].

In response to the first criticism, sections 2–5 of this paper will emphasize
that the theory in question has never been used as a basis for inference but is
used instead as a basis for intuition. It will review the reasons why this approach
seems plausible and what it has accomplished. Later sections will emphasize
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that statistical inference has been based on computer simulation, not on the
theoretical mismatch distribution.

The second criticism would not appear relevant to the work of Harpending
et al [6], whose model incorporates the effect of genetic population structure. It
may however bear on other work that assumes a randomly mating population.
The final sections of the paper will therefore explore the effect of population
structure on statistical methods that I develop elsewhere [18].

2 What is a mismatch distribution, and how can

it inform us about history?

Genetic data provide a record of population history that stretches back tens or
even hundreds of thousands of years. This record exists for two reasons. First,
genetic differences between individuals measure the length of the genealogy that
connects them. Second, genealogical distances tend to be longer in large popu-
lations than in small ones. For example, a random pair of individuals are more
likely to be brothers, and thus connected by a short genealogy, in a population
of 100 than in one of 100 million.

To get a feel for this effect, consider Figure 1. The upper panel there shows
the history of a hypothetical population, with time measured in units of 1/(2u)
generations before the present. Here, u is the aggregate mutation rate over the
region of DNA under study. This scale of measurement is useful because it makes
the time separating two individuals equal to the expected genetic difference
between them.1 For concreteness, I assume that u = 0.0015.2 If each generation
lasts 25 years, this mutation rate makes each unit of mutational time equal to
8333 years. In the figure, NF denotes the effective female population size. The
hypothetical population expanded by 500-fold at 7 units of mutational time
(58,000 years) before the present.

The middle panel shows a simulated mitochondrial genealogy of 50 individu-
als, which was generated from this population history using the “coalescent” al-
gorithm that I describe below. The 50 individuals in this sample are represented
by 50 horizontal lines at the left edge of the genealogy, which corresponds to
the present. The vertical lines in the genealogy mark places where two lineages
have a common ancestor and “coalesce” into a single lineage. In this genealogy,
coalescent events occur only rarely during the period from the expansion to the
present. 35 of the 49 coalescent events are compressed into a relatively brief
interval just prior to (to the right of) the expansion. This reflects the history of
population size. After the expansion, the population was large and a random
pair of individuals was unlikely to share the same mother. Therefore, coales-
cent events were rare. But prior to the expansion the population was small,
and coalescent events were common. The result is that coalescent events are
concentrated in a relatively brief interval prior to the expansion. This pattern
is characteristic of expanded populations (see Rogers and Jorde [20] for another
hypothetical example). It also appears in many gene genealogies estimated from
human mtDNA [3].

1For example, if two lineages have been separate for 7/(2u) generations, the expected
number of mutations separating the them is 2u × 7/(2u) = 7.

2This estimate was obtained by Rogers and Harpending [19] for the data of Cann, Stonek-
ing, and Wilson [2], which I discuss further below.
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Figure 1: Mitochondrial genealogy and mismatch distribution of a hypothetical
population
The top panel shows 2uNF as a function of time before present, with time measured
in units of 1/(2u) generations. Here, NF is the effective female population size and
u the aggregate mutation rate over the region of DNA under study. The population
was small prior to time 7. The middle panel shows the genealogy of a sample of 50
individuals drawn from this population. The crosses represent mutations. The open
circles in the bottom panel show these same data as a mismatch distribution. The
solid line there shows the theoretical mismatch distribution for the parameters of the
hypothetical population.
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A wave such as that in Figure 1 might also have been produced by selection
rather than population growth. Under this interpretation, Figure 1 tells a dif-
ferent story: A favorable mitochondrial allele appears by mutation at 7 units
of mutational time before the present and then spreads rapidly to fixation. In
the upper panel of the figure, NF now refers not to the female population size
but to the number of female descendants (or maternal ancestors) of the mutant
female. There were few individuals in this lineage before the mutation (in fact
there was only one: the mutant female has a single maternal ancestor in each
generation) but many in the generations that followed the mutation. Although
natural selection is responsible for the increase in the size of this lineage, the
individuals within the lineage are selectively neutral with respect to each other,
since each carries a copy of the same mitochondrial allele. Thus, it is appropri-
ate to assume that variation within the lineage (and within our modern sample)
is selectively neutral. This selective interpretation therefore leads to a geneal-
ogy and a mismatch distribution that are indistinguishable from that produced
by population growth. Since the mismatch distribution is consistent with two
interpretations (population growth and natural selection), the choice between
these interpretations must be based on other data [20].

The crosses on the genealogy in Figure 1 represent mutations, which occur
randomly along each branch. If this were a real population, we could count
the mutational differences between pairs of individuals,3 but we could not know
either the true genealogy or the population history. These could only be esti-
mated.

But any effort to infer the genealogy in Figure 1 from genetic data would
be doomed to failure. In these data, nearly all of the 157 mutations occur
after the expansion, in the part of the genealogy with few coalescent events.
There are 35 coalescent events prior to the expansion but only 7 mutations.
Consequently, no statistical method could succeed in telling us much about
the topology of this genealogy—the data are essentially devoid of phylogenetic
information. This example shows how a population expansion (or the selective
sweep of a favorable allele) can lead to data with low phylogenetic resolution.
With such data there is little point in trying to reconstruct the gene genealogy.

This is not to say that methods of phylogenetic inference are useless. Even
when these methods cannot tell us the topology of the tree, they might still
tell us that coalescent events were clustered in a narrow interval of time [3, 8].
This would imply a small effective population size during this interval. Thus, the
data may tell us about population history even if they are devoid of phylogenetic
information.

But when the sample of individuals is large, phylogenetic inference is a
formidable business. There is no efficient way to search the immense set of
possible genealogies for those which best describe the data, and computer runs
take many hours. The method to be described below is a short-cut that avoids
this problem. To introduce it, I turn once again to the hypothetical data in
Figure 1.

Let us assume that each mutation produces a detectable nucleotide site dif-
ference (the so-called model of “infinite sites” [12] that is discussed in foot-
note 3). The number of site differences between each pair of individuals in

3Strictly speaking, this is not so. We can only count nucleotide (or restriction) site differ-
ences between pairs of individuals, and such a difference may reflect more than one mutation
[13]. This issue is discussed further in the “Discussion” section.
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Figure 1 is then equal to the number of crosses along the path connecting them.
For example, there are six site differences between the top-most pair of individ-
uals in the genealogy. With 50 individuals in the sample, there are 1225 pairs
of individuals, and we can count the differences between each pair. The open
circles in the lower panel represent these 1225 differences as a scatter plot. Such
plots are sometimes called “distributions of pairwise differences,” and sometimes
“mismatch distributions” [7, 6]. For simplicity, I will use the latter term. Notice
that the mismatch distribution in Figure 1 peaks just to the right of the point
i = 7. This is because, as the genealogy shows, many pairs of individuals are
separated by a little more than 7 units of mutational time and are therefore
expected to differ by a little more than 7 mutations (see footnote 1). Thus, the
mismatch distribution peaks just prior to the expansion at a point corresponding
to the part of the genealogy at which coalescent events are concentrated.

Had the expansion happened earlier, the peak would have been farther to
the right. As time passes the peak will move from left to right, traversing one
unit of the horizontal axis in 1/(2u) generations [19]. Thus, the distribution
looks and acts like a wave moving very slowly from left to right. The horizontal
position of the wave measures time since the expansion in mutational time units.

This example suggests that the mismatch distribution might provide infor-
mation about the history of population size and/or natural selection. Unfortu-
nately, there is no statistical theory to tell us how this information can best be
extracted. We can of course define ad hoc statistics and explore their behav-
ior through computer simulation, but it is difficult to know in advance which
statistics are likely to prove useful. To use simulations effectively, we need some
basis for intuition about the behavior of the mismatch distribution. To gain
such intuition, it is useful to study the “theoretical mismatch distribution.”

3 The theoretical mismatch distribution

There are no simple theoretical formulas for subdivided populations, so I shall
rely on results for a population that mates at random. Even there, we have
no explicit formulas for samples of arbitrary size and must make do with for-
mulas for samples of only two individuals. Watterson [23] showed how to cal-
culate the probability that two individuals would differ by i nucleotide sites
in a population of constant size. His model is compared to simulated data in
Figure 2. Watterson’s theoretical mismatch distribution is drawn as a solid
line in the lower panel. The contrast between it and the simulated mismatch
distribution—shown by the open circles—could not be greater. Whereas the
theoretical distribution declines smoothly from a maximum at i = 0, the sim-
ulated distribution is ragged, with multiple peaks and a maximum value at
i = 93. To recover the theoretical curve, we would need to average a large num-
ber of simulated mismatch distributions with the same population history. With
real data, this would require the impossible—averaging mismatch distributions
from a series of parallel worlds [22].4 Since we have only one world to study,

4One reviewer disagreed with this claim, so I will provide a proof: Let

δij(k) ≡

{

1 if the ith and jth DNA sequences in the sample differ by k sites
0 otherwise

If the sample was drawn at random, then for any distinct i and j the expectation E[δij(k)] is
by definition equal to Fk, the kth term of the theoretical mismatch distribution. The empirical
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Figure 2: Mitochondrial genealogy and mismatch distribution of a hypothetical
equilibrium population
This hypothetical population has always had a constant size, NF = 30/(2u). Defini-
tions are as in figure 1.
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there are grounds for skepticism about the utility of the theoretical mismatch
distribution.

But let us press on, nonetheless, to the case in which population size has not
been constant. Li [14, Equation 5] developed the relevant formula, which was
used by Rogers and Harpending [19] to study population histories such as that
in Figure 1. Their Equation (4) was used to draw the solid line representing
the theoretical distribution in the lower panel of that figure. The agreement
between theory and simulated data is much better in the non-equilibrium case
(Figure 1) than in the equilibrium case (Figure 2). This is no fluke: theory and
simulated data often agree in expanded populations, provided that the initial
population was fairly small [19]. Thus, the theoretical formula may be useful
after all as a basis for intuition about the empirical distributions of expanded
populations.

This argument is not rigorous, but it doesn’t need to be. I am trying to
justify using the theory as a basis for intuition, not as a basis for inference.
Below, the theory will suggest which statistics should be calculated, and how
they might be related to parameters describing population history. But these
suggestions are only tentative, and are therefore checked by computer simula-
tion. Thus, statistical inference will be justified by computer simulation, not by
appeal to the theoretical mismatch distribution.

4 What should be estimated?

We cannot hope for a complete description of the population’s history. That
would require one parameter—the population’s size—for each time period. If
the population were subdivided, we would need additional parameters for mi-
gration rates in each time period. Yet it is never possible to estimate more
than a few parameters at once. We must content ourselves with some simplified
representation of population history.

Fortunately, the theoretical mismatch distribution suggests that a simple
model may be useful. The population history in Figure 1 has just three param-
eters: N0 (the female population size before expansion), N1 (the post-expansion
size), and t (the time in generations since the expansion). Unfortunately, these
parameters are all confounded with the mutation rate so that the mismatch
distribution depends only on

θ0 ≡ 2uN0 (1)

θ1 ≡ 2uN1 (2)

τ ≡ 2ut (3)

where as before u is the aggregate mutation rate over the region of DNA under
study. Because N0, N1, and t are confounded with u, it is not possible to

mismatch distribution is F̂k ≡
(

n

2

)−1 ∑

i<j
δij(k), where n is the number of DNA sequences

in the sample. Its expectation is therefore

E[F̂k] =
(n

2

)−1
∑

i<j

E[δij(k)] = Fk

Thus, the theoretical mismatch distribution is the expectation of the empirical distribution.
Were it possible to average independent realizations of F̂k, the law of large numbers would
guarantee that this average would converge to Fk as the number of cases became large.
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estimate any of these parameters directly from genetic data. Consequently, I
address myself to the problem of estimating θ0, θ1, and τ .

This three-parameter model is not complex enough to describe the history of
any real population, but it may nonetheless provide a fair description of the data.
Analysis of the theoretical mismatch distribution [19] shows that the three-
parameter model is robust in several ways: (1) When a population’s size is small,
convergence to the equilibrium is rapid. This implies that “bottlenecks,” or
temporary reductions in population size, amount to growth from an equilibrium
population unless the bottleneck is very brief. Thus, it is not unreasonable to
assume that the pre-expansion population was at equilibrium. (2) Instantaneous
growth has an effect on the mismatch distribution that is indistinguishable from
exponential growth over thousands of years. (3) After the population has grown
large, subsequent episodes of growth and minor bottlenecks have little effect
on the mismatch distribution. Because of these properties, the three-parameter
model should prove useful even in populations whose histories are more complex
than that in Figure 1.

This conclusion is based on the theoretical mismatch distribution, and should
therefore be regarded with caution. It may not hold in circumstances where em-
pirical and theoretical distributions tend to differ. Consider therefore the hy-
pothetical population whose history, genealogy, and mismatch distribution are
shown in Figure 3. This population is similar to that in Figure 1 in that it too
experienced a burst of growth at mutational time 7, was small for a long while
before, and was generally large thereafter. But there the similarity ends. The
population in Figure 3 has seen several growth spurts and minor bottlenecks.
Even the spurt at time 7 is different, being exponential rather than instanta-
neous. Yet none of this has any important effect. The genealogies of the two
populations both show the same pattern—coalescent events are concentrated
in a brief interval just prior to the population expansion. The lower panel of
Figure 3 includes both the theoretical distribution of the complex population
history (shown as a solid line) and of the simple population history (the dotted
line). There is hardly any difference between them. This illustrates the robust-
ness of the theoretical mismatch distribution [19]. The empirical distributions
shown in Figures 1 and 3 are also very similar; the difference between them is
no larger than that typically seen in different distributions simulated with the
same population history. Were we to analyze the data in Figure 3 using the
simpler population history of Figure 1, we would not be led astray. We would
conclude correctly that a substantial episode of growth had occurred at around
τ = 7. Thus, the simple three-parameter model of population history can be
useful even with populations whose histories are far more complex.

It would be easy to over-interpret these examples. While they suggest that
the empirical mismatch distribution is insensitive to many details of population
history, they don’t amount to a proof. Furthermore, they deal only with the
history of population size and therefore tell us nothing about the effect of other
assumptions that may be violated. It is not even true that the difference be-
tween the population histories of Figures 1 and 3 has no effect on the mismatch
distributions, for the second history very occasionally produces distributions
with a second peak very far to the right. I found 2 such distributions in 100
trials with the complex history but none with the simpler history. All the other
simulated distributions looked similar to those in Figures 1 and 3. Since the
two histories produce similar distributions 98 times in 100, it is reasonable to
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Figure 3: The minimal effect of a complex population history
The dotted line shows for comparison the theoretical mismatch distribution from Fig-
ure 1. Everything else is as defined in Figure 1.
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estimate the parameters of the simple history in either population. The rare
outliers of the complex history will however affect the statistical properties of
these estimates. For example, the mean depth of genealogies from the complex
history is about twice that of genealogies from the simpler history. This will
require further discussion below in the section on confidence intervals.

5 Estimators

Statisticians have developed various methods for finding statistics to estimate
particular parameters. The simplest of these, called the method of moments,
proceeds by equating theoretical moments (the mean, the variance, and so on)
with observed moments and solving the resulting equations. There is no good
reason for confidence that this method will yield well-behaved estimators. The
problem is that mismatch distributions do not offer a set of independent, identi-
cally distributed observations. Each pair of individuals in the data is correlated
to a greater or lesser degree with many others. Thus, computer simulations
will be needed not only to determine the statistical properties of the estimators
proposed below but also to verify that they behave as estimators at all.

Given three parameters, θ0, θ1, and τ , a straightforward application of the
method of moments would use three equations, obtained from the theoretical
formulas for the mean, the variance, and the skewness. This approach works
poorly here, because it is often impossible to solve these three equations.

However, the theoretical mismatch distribution tells us that there is usually
very little information about θ1 anyway. A large value of θ1 has essentially the
same effect as an infinite value. Therefore, we may hope to estimate θ0 and τ
from a model in which θ1 → ∞. In this case, there are only two equations, and
these have a simple solution [18]:

θ̂0 =
√

v − m (4)

τ̂ = m − θ̂0 (5)

where m is the mean and v the variance of the empirical mismatch distribution.
I propose to use these statistics as estimators.

This proposal, however, is only based on intuition—the intuition provided
by the theoretical mismatch distribution. To justify this intuition it is necessary
to show that θ̂0 and τ̂ do in fact behave as estimators. For each set of parameter
values, the sampling distributions of the estimators should ideally be narrow,
and centered around the true parameter values.

I have verified this behavior elsewhere [18] and will here include only a single
figure. Figure 4 was obtained by simulating 1000 data sets at each of several
values of τ and using each of these to calculate τ̂ . At each value of τ , the 1000
estimates were used to estimate the quantiles of τ̂ , and these quantiles are shown
in the figure. At each value of τ , the median (shown as a solid line) is close to
the bold dot that marks the true value of τ , and the distribution is relatively
narrow. Thus, not only does τ̂ behave as an estimator, it is an estimator with
admirable statistical properties. A similar analysis [18] shows that θ̂0 is also
well behaved when θ0 ≥ 1 but is incapable of discriminating values in the range
0 < θ0 ≤ 1. This is not a serious limitation. It means only that when θ̂0 ≈ 1,
the confidence interval will reach all the way to zero.
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Figure 4: Quantiles of τ̂
At least 1000 data sets were simulated at each of several values of τ , and each was used
to estimate the model’s parameters. The bold dots indicate points at which τ̂ = τ . The
solid line is the median, the dashed lines enclose the central 50% of the distribution,
and the dotted lines the central 95%. Each simulated data set was generated using
the coalescent algorithm with θ0 = 1, θ1 = 500, and 147 subjects.

6 Simulating data sets with population struc-

ture

Thus far, I have merely summarized previous work, which assumed a randomly
mating population. What happens when these methods are applied in a sub-
divided population? To find out, I have implemented the geographically struc-
tured coalescent algorithm described by Hudson [9]. My implementation breaks
the population history into an arbitrary number of “epochs,” within each of
which all parameters are constant. Within epoch i, the population is described
by four parameters,

θi = 2uNi, where Ni is the effective female population size during epoch
i;

Mi = the number of migrants per generation between each pair of groups
during epoch i;

τi = 2uti, where ti is the length of epoch i in generations;

Ki = the number of subdivisions during epoch i.

If Ki = 1, then Mi is undefined and the entire population mates at random.
The earliest epoch is epoch 0 and has infinite duration, i.e. τ0 = ∞.

The algorithm begins with the last epoch, which I denote as epoch L. The
n individuals of the sample are at first divided evenly among the KL groups of
epoch L. Thus, the algorithm requires that n be evenly divisible by KL.5

As the algorithm moves backward into the past, two types of event occur.
Migrations occur when an individual moves from one group to another, and
“coalescent events” occur when two individuals have a common ancestor and
therefore coalesce to become a single individual.

5The allocation of individuals among groups in the simulation should match that in the
data under study. Thus, the allocation used here is most appropriate when the real data
include samples of equal size, drawn from several groups.
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The hazard h at time τ is defined so that h dτ is the probability that an event
of either type will occur between τ and τ + dτ , where τ measures mutational
time looking backwards into the past. The hazard depends on prevailing values
of the population history parameters, on the number of individuals, and on how
these are distributed among groups. At any given time, let sj denote the number
of individuals within group j, S ≡

∑

j sj (the total number of individuals), and

R ≡
∑

j s2

j (the sum of these numbers squared). Then the hazard of an event

is6

h = [SMi + (R − S)/2]/γi (6)

where γi ≡ θi/Ki, and measures group size in epoch i.
The algorithm first sets S = n, R = KL(n/KL)2, and then sets h using

these values together with the parameters of the final epoch, L. It then enters a
loop that is executed repeatedly. I describe the steps of this loop briefly before
describing each step in detail.

Overview of coalescent loop

1. Find the time of the next event, changing epochs and recalculating h as
necessary.

2. Determine whether the next event is a migration or a coalescent event.

3. Carry out the next event.

These steps are repeated until S = 1. Mutations are then added along each
branch.

Step 1 Let Ti denote the amount of time that we have already traveled (back-
wards) into epoch i. To find the time of the next event, draw a random number
x from an exponential distribution whose parameter equals unity. In a constant
world, the time of the next event would be Ti + x/h. If this time lies within
epoch i (i.e. if Ti + x/h < τi), then we have found the time of the next event.
Otherwise, change epochs as follows:

a Subtract off the portion of x that is “used up” by epoch i, i.e. subtract
h · (τi − Ti) from the value of x.

b Reset population history parameters to those of epoch i − 1 and set Ti

to zero. If Ki−1 < Ki, join groups at random to diminish the number
of groups. If Ki−1 > Ki, increase the number of groups, but allocate no

6Let m denote the migration rate per generation, g the group size, and M ≡ mg. The
hazard per generation is

h∗ ≡
∑

j

[sjm + sj(sj − 1)/(2g)] = (1/g)[SM + (R − S)/2]

The cumulative hazard in t generations is

h∗t =
2ut

2ug
[SM + (R − S)/2] ≡

τ

γ
[SM + (R − S)/2],

where τ ≡ 2ut and γ ≡ 2ug. Equation 6 follows from the observation that, by definition, the
hazard h in mutational time obeys hτ ≡ h∗t.
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individuals to the new groups. Individuals will enter the new groups only
through migration.7

c Reset R and h. Subtract 1 from the value of i.

This process repeats until Ti + x/h < τi.

Step 2 Once the time of the next event has been established, step 2 classifies
the event as either a migration or a coalescent event. Equation 6 implies that
the event is a migration with probability

PM =
SMi

SMi + (R − S)/2

Thus, step 2 calls the next event a migration with probability PM and a coales-
cent event with probability 1 − PM .

Step 3 If the next event is a migration, then move a random individual into
a new, randomly chosen group. Then reset R and h.

Otherwise, we have a coalescent event and the procedure is as follows. First
choose a group at random, weighting each group by the number of pairs of
individuals within it. Then choose a random pair of individuals from within
the chosen group, replace the two individuals with a single individual (their
common ancestor), reduce S by 1, and reset R and h.

Mutation I use the infinite sites model of mutation, which implies that the
number of mutations along each branch is a Poisson random variable with pa-
rameter ut, where u is the mutation rate and t the length of the branch in
generations [12]. In mutational time, branch lengths equal τ ≡ 2ut and the
Poisson distribution has parameter τ/2.

To execute this algorithm, it is necessary to specify the sample size n and
the parameters (θi, Mi, τi, and Ki) that describe the population’s history.
There is no need to specify the mutation rate, the number of individuals in
the population, or the number of generations in each epoch.

7 Confidence regions

A 95% confidence region is a set of parameter values constructed by any pro-
cedure that guarantees the following property: If, each time we construct a
95% confidence region, we assert that it includes the true parameter value, we
will in the long run be correct 95% of the time (and incorrect 5% of the time).
One way to construct such a region is to define some statistical test whose
outcome depends only on the data and the parameters of interest. The set of
parameter values that cannot be rejected at significance level α will constitute
a 100 × (1 − α)% confidence region [11, p. 110].

I shall apply this method to hypotheses about population history. A hy-
pothesis is rejected at significance level α if it implies that data sets “at least as

7The assumption for Ki−1 > Ki implies that, in forward time, the number of groups has
decreased because some groups have died out. Other assumptions are possible and the present
one was chosen only for computational convenience.
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Figure 5: The model of sudden expansion fit to the data of Cann, Stoneking
and Wilson
The open circles show the mismatch distribution (the relative frequencies of pairs of
individuals whose mtDNA samples differ by i sites) of Cann, Stoneking, and Wilson
[2, fig. 1]. The solid line shows the fit of the non-equilibrium distribution [19] obtained
using the two-parameter method of moments estimator [18]. This figure summarizes
comparisons among n = 147 subjects.

extreme” as the real data occur with a frequency less than α. Given a precise
definition of “at least as extreme,” it is easy to estimate the frequency of such
events. I generate a large number of simulated data sets using the coalescent
algorithm described above, and estimate α by the fraction of the simulated data
sets that are at least as extreme as the observed data.

It remains to decide when a simulated data set will be deemed at least as
extreme as the observed data. This decision might be made in any number of
ways, all of which would yield valid confidence regions. Yet these definitions
would not all be equally useful. I have tried to design a test that would yield
small confidence regions in expanded populations. The test is described in
full elsewhere [18] and is summarized only briefly here: A simulated data set
is deemed to be at least as extreme as that observed if (a) the Mahalanobis

distance [10, pp. 423–424] between the vector (θ̂0, τ̂) and the simulation mean
is at least as large for the simulated data as for the real data, and (b) the mean
squared error (MSE) between empirical and theoretical mismatch distributions
is at least as large for the simulated data as for the observed data. Occasionally,
the covariance matrix used in calculating the Mahalanobis distance turns out
to be singluar and this test fails to provide an answer.

This method yields information not only about θ0 and τ , but also about
θ1, because for given values of θ0 and τ , the MSE tends to decrease with θ1.
Simulations show that this method yields confidence regions that usually enclose
the true parameters values and are reasonably small in expanded populations
under random mating [18].

In structured populations, these confidence intervals could presumably be
made smaller by using a test that distinguishes within-group from between-
group variation [6]. Nonetheless, I will work instead with distributions calcu-
lated from the population as a whole, using the test developed for my earlier,
random-mating model [18]. This will make it possible to assess the bias that is
introduced when that model is applied to data from a structured population.
Thus, I take no account of population structure when estimating parameters.
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The statistical properties of these estimates, however, will be investigated under
various assumptions about population structure. To make comparisons simple,
I also analyze the same data set that was used in that earlier publcation. These
data were published by Cann, Stoneking, and Wilson [2] and are shown in Fig-
ure 5.8

8 Population structure

In this section I consider three models of population history. The first—that of
world-wide random mating—is not realistic. I include it because it is simple,
because it has been used before [18], and because I want to find out whether
it yields useful answers even when reality is more complex. The second model
assumes that the human population is been subdivided as far as we can see
back into the past, while the third assumes that subdivision appeared more
recently. These models represent the multiregional and the replacement models
of modern human origins, respectively.

8.1 Random mating

My earlier confidence intervals [18] made the simplest possible assumption about
population structure: that of an undivided randomly mating population. With
the present model, this case corresponds to a population history of the following
form:

Epoch θi Mi τi Ki

1 θ1 0 τ 1
0 θ0 0 ∞ 1

In each epoch, there is only a single subdivision (Ki = 1) and there can of course
be no migration between subdivisions (Mi = 0). In an earlier publication [18]
I used this population history together with the data in Figure 5 to infer the
confidence region shown in Figure 6. The open circles there represent hypotheses
that were rejected at the 0.05 significance level. The filled circles represent
hypotheses that could not be rejected. Thus, the filled circles delimit a 95%
confidence region for the parameters defined in Equations 1–3. The confidence
region implies that θ0 < 10, θ1/θ0 > 100, and that 4 < τ < 9. Yet these results
rely on an assumption that has surely been violated: They assume random
mating, whereas the human population is geographically structured.

The history of this structure is a matter of debate. There are two competing
views, which I discuss below.

8.2 The multiregional hypothesis

The multiregional hypothesis of modern human origins [24, 4] holds that our
species evolved within a widespread population that has inhabited much of
Europe, Africa, and Asia for the past million years. Favorable mutations arising

8Do not read too much into the close fit between the observed and the theoretical distribu-
tions. This fit provides no strong support either for the theory or for the statistical methods.
See my earlier paper [18] and the discussion above dealing with Figure 4.
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Figure 6: A 95% confidence region for the CSW data under the assumption of
random mating
Large filled circles (•) indicate points within the 95% confidence region, and open
circles (◦) indicate points outside of the confidence region. 10x-fold growth means
that θ1/θ0 = 10x. Missing circles indicate parameter values for which no test was
possible because the covariance matrix of (θ̂0, τ̂) was singular. Data are from Cann,
Stoneking, and Wilson [2]. Reproduced from Rogers [18].
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Figure 7: Multiregional hypothesis, M = 0.1

in one location spread to others by gene flow rather than by replacement of entire
populations.

This hypothesis implies that the geographic structure of our species goes
back at least a million years, originating well before the common mitochondrial
ancestor. For our purposes, this is equivalent to assuming that the structure
has existed forever. Thus, I use a population history of form

Epoch θi Mi τi Ki

1 θ1 M τ 3
0 θ0 M ∞ 3

with K0 = K1 = 3 to represent the three major races, and migration is measured
by the parameter M . In words, this history assumes that the population has
always been divided into three groups, which have always exchanged M migrants
per generation. The history allows for a change in population size from θ0 to θ1

at τ units of mutational time before the present.
This history was used to generate the confidence regions shown in Figures 7–

9. The three confidence regions differ in their assumptions regarding the level
M of migration. Figure 7 assumes that migration is weak (M = 0.1), Figure 8
that it is moderate (M = 1), and Figure 9 that it is strong (M = 10). In
all of three figures, the confidence region is smaller than that under random
mating and includes no parameters values that are not also included within
the random-mating confidence region. There is one important difference: The
multiregional hypothesis requires that θ0 < 2.15, whereas the model of random
mating requires only that θ0 < 10.
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Figure 8: Multiregional hypothesis, M = 1
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Figure 9: Multiregional hypothesis, M = 10
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Figure 10: Replacement model, M = 0.1

Using published estimates of u, my previous paper found that the random-
mating result requires that N0 < 7000 breeding females [18].9 Since this num-
ber seemed too small to populate the continents of Europe, Africa, and Asia,
I viewed this estimate as evidence against the multiregional hypothesis. Yet
now it is clear that my earlier estimate was too generous. The reduced upper
bound on θ0 implies that N0 < 1500 breeding females. Thus, if the wave in
the mitochondrial data reflects population growth rather than selection, then
the analysis with population structure rejects the multiregional hypothesis even
more strongly than the one without.

It seems clear, moreover, that this conclusion would not be altered much
by other assumptions about M . The upper bound on θ0 increases with M
(compare Figures 7–9), so smaller values of M would not lead to any favorable
assessment of the multiregional hypothesis. On the other hand, larger values of
M might do so. However, as M grows large, the confidence region will approach
the random-mating result, which still allows only 7000 breeding females. Thus,
it is not possible to salvage the multiregional hypothesis by a judicious choice
of M .

8.3 The replacement hypothesis

The replacement hypothesis holds that modern humans evolved in one region
and spread from there throughout the world some 50,000–100,000 years ago,

9I used the smaller of the two published estimates of u (û = 7.5 × 10−4) in order to make
the upper bound on N0 as large as possible.
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replacing earlier peoples as they went. This view implies that the geographic
structure of the human population is less ancient, having developed after the
initial expansion of modern humans. Thus, the population history becomes

Epoch θi Mi τi Ki

1 θ1 M τ 3
0 θ0 M ∞ 1

The difference here is that K0 = 1, rather than 3. In words, this says that prior
to the expansion that occurred τ time units ago, there was only 1 ancestral
population rather than 3.

The confidence interval generated under this hypothesis is shown in Fig-
ure 10 and is similar to that in Figure 6. The main difference seems to be
that the hypothesis of random mating rejects 100-fold growth, while the re-
placement hypothesis does not. This makes sense, since subdivision increases a
population’s effective size [16]. Thus, a 100-fold increase that is combined with
subdivision is equivalent to a larger increase without subdivision. Apart from
this amendment, the replacement hypothesis is well approximated by a model
of random mating and allows the initial population to be nearly five-fold larger
than does the multiregional hypothesis. This paradoxical result says that if our
ancestors were all in one place then their population may have been of moderate
size (N0 < 7000), yet if their population was subdivided then it must have been
extremely small (N0 < 1500).

9 Discussion

Two studies [15, 6] have shown that when the initial population is relatively
large, and especially if it is geographically structured, mismatch distributions
are often rough and ragged like that in Figure 2. Smooth waves such as that in
Figure 1 occur only when the initial population is extremely small. These re-
sults have been interpreted as evidence that statistical inference from mismatch
distributions is a perilous business [15], but I would argue otherwise. Indeed,
the raggedness of these distributions makes my confidence regions smaller. Ac-
cording to the confidence regions, the upper bound on θ0 is 2.15 when the initial
population is strongly structured but 10 when it mates at random. This is be-
cause intermediate values such as θ0 = 5 produce ragged mismatch distributions
if the initial population is structured but not if it mates at random. Since ragged
distributions look nothing like the observed distribution (Figure 5), the statis-
tical method rejects the parameter values that generate them. Far from being
a problem, raggedness made the present estimates more accurate [5].

On the other hand, raggedness is not always a blessing. When the observed
mismatch distribution is ragged, the present statistical methods yield large con-
fidence regions [18]. But this is as it should be. Large confidence regions may
be disappointing, but they are unlikely to lead us astray. They demand no more
caution than is normal in statistical analysis.

The results presented here suggest that geographic structure affects the mis-
match distribution primarily by way of effective population size. Effective size
is larger if a population is structured than if it mates at random [16]. Conse-
quently, a population with a structured initial population behaves like one with
a large initial population—its mismatch distribution tends to be ragged. By
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the same token, a population that expands and at the same time subdivides
behaves like a population that has undergone a much larger expansion. This
accounts for the fact that a 100-fold expansion is rejected under the model of
random mating but not under the replacement hypothesis. A smaller expansion
is allowed in the latter case because geographic structure makes the effective
expansion larger than the expansion in numbers.

The expansion that is inferred here can be interpreted in two ways. It may
have been either an expansion in population size or the expansion in frequency
of an advantageous mitochondrial allele. Harpending et al. [6] and Rogers and
Jorde [20] present arguments in favor of the former interpretation, but additional
data will be needed to settle the issue.

There is also cause for concern about my use of the infinite sites model of mu-
tation. R. Lundstrom (unpublished data) has shown that with a finite number
of sites and mutation rates that vary from site to site, waves can be generated in
the theoretical distributions even of equilibrium populations. Fortunately, my
own calculations indicate that this effect is unlikely to be important in the the-
oretical distributions considered here [17]. But even if this effect is negligible in
theoretical distributions, its effect on the statistical distribution of my estimates
may be important [1].

Finally, it has been argued that mismatch distributions should be interpreted
with special caution because we have only one world to study [15, 1]. Because of
this limitation, the empirical mismatch distribution amounts to a single obser-
vation from a distribution that (depending on parameter values) may be highly
variable. This problem is real, for it makes parameter estimates less precise—
confidence regions would surely be smaller with data from parallel worlds. Yet
it is not a fatal problem, since the confidence regions are small enough to be
useful even without parallel worlds.

10 Summary

This paper began with a review showing how the theoretical mismatch distri-
bution has been useful in previous research as a basis for intuition. It then
introduced a method for inferring confidence regions with data from subdivided
populations, emphasizing that these methods are based on computer simulation,
not on the theoretical mismatch distribution. The statistical methods show that
if the pattern in the mitochondrial data reflects population growth rather than
selection, then (1) the multiregional hypothesis of modern human origins is re-
jected more strongly than before, (2) the replacement hypothesis of modern
human origins is not rejected but allows the expansion of population size to be
smaller than did my earlier random-mating model, (3) the model of random
mating yields a confidence region that encompasses that of the multiregional
hypothesis and differs only slightly from that of the replacement hypothesis.
(4) Population structure does not make confidence intervals larger, at least for
the data considered here. Consequently, these results provide no support for
the view that population structure reduces the value of mismatch distributions
for statistical inference.
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