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Episodes of population growth and decline leave characteristic signatures in the 
distribution of nucleotide (or restriction) site differences between pairs of individuals. 
These signatures appear in histograms showing the relative frequencies of pairs of 
individuals who differ by i sites, where i = 0, 1, . . . . In this distribution an episode 
of growth generates a wave that travels to the right, traversing 1 unit of the horizontal 
axis in each 1 / 224 generations, where u is the mutation rate. The smaller the initial 
population, the steeper will be the leading face of the wave. The larger the increase 
in population size, the smaller will be the distribution’s vertical intercept. The 
implications of continued exponential growth are indistinguishable from those of 
a sudden burst of population growth. Bottlenecks in population size also generate 
waves similar to those produced by a sudden expansion, but with elevated upper- 
tail probabilities. Reductions in population size initially generate L-shaped distri- 
butions with high probability of identity, but these converge rapidly to a new equi- 
librium. In equilibrium populations the theoretical curves are free of waves. 
However, computer simulations of such populations generate empirical distributions 
with many peaks and little resemblance to the theory. On the other hand, agreement 
is better in the transient (nonequilibrium) case, where simulated empirical distri- 
butions typically exhibit waves very similar to those predicted by theory. Thus, 
waves in empirical distributions may be rich in information about the history of 
population dynamics. 

Introduction 

Molecular genetic data have become increasingly important in studies of recent 
evolutionary history ( Avise et al. 1987 ) , and their use has generated a lively controversy 
concerning the origin of modern humans (Cann et al. 1987; Spuhler 1988; Stringer 
and Andrews 1988; Mellars and Stringer 1989). These data contain information not 
only about relationships among populations (Felsenstein 1988; Swofford and Olsen 
1990) but also about past population sizes (Nei and Graur 1984; Avise et al. 1988; 
Felsenstein, accepted). Methods for inferring relationships between populations are 
fairly well developed, but methods for inferring past population sizes are in their 
infancy. The present paper will show how the trajectory of population size affects one 
type of molecular data: the distribution of pairwise nucleotide (or restriction) site 
differences between individuals. It will then use the results to assess two hypotheses 
concerning the origin of modern humans. 
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Waves Generated by Population Expansion 

We assume that recombination is weak or absent and denote by N the number 
of either haploid individuals or diploid chromosomes under study. The mutation rate, 
U, is the per-generation probability that a mutation strikes some nucleotide in the 
region under study. Each mutation along the evolutionary path between two individuals 
is assumed to increase the count of differences between them. This is the “infinite 
sites” model (Kimura 197 1) and is an accurate approximation only for relatively short 
periods of time (while the number of generations is much less than the reciprocal of 
the mutation rate per nucleotide per generation). 

Let Fi(t) denote the probability that two random neutral genes will differ at 
exactly i nucleotide sites in generation t. If u is small and N is large, so that second- 
order terms in u and 1 /N can be ignored, then 

F,(t + 1) N l/N+(l -2u- l/N)&(t) (1) 

and 

Fi+r(t + 1) x (1 - 2~ - l/N)Fi+r(t) + hFi(t) s (2) 

Watterson ( 1975) showed that, if the population remains constant in size, then Fi (t) 
converges toward an equilibrium distribution, 

where 9 = 2Nu is the expected pairwise difference. This curve is easily fit to data by 
equating 8 with the observed mean of pairwise differences (Avise et al. 1988; Maynard 
Smith 1990; Wills 1990). This is done in figure 1, with the worldwide sample of 
human mitochondrial DNA described by Cann et al. ( 1987). Clearly, the equilibrium 
curve fits these data very poorly. Instead of the smooth decline that is predicted, the 
data exhibit a pronounced wave with a crest at roughly i = 8. Such waves also appear 
in other published pair-wise-difference distributions (see fig. 4) and are discussed in 

Fi 
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FIG. 1 .-Poor fit of equilibrium distribution. The circles show the empirical pairwise-difference distri- 
bution reported by Cann et al. ( 1987), based on their fig. 1. The solid line is an equilibrium distribution 
with the same mean. 
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several recent publications (Di Rienzo and Wilson 199 1; Slatkin and Hudson 199 1). 
We will argue that these waves are the signature of an ancient population explosion. 

Li ( 1977) derived an expression for the transient distribution of pairwise differ- 
ences. Given the probability, Fi (0), that a random pair of individuals differ by i sites 
at time 0, Li’s equation provides the analogous probability at any later time. The 
result is conveniently expressed on a mutational time scale, z = 2ut, where t measures 
time in generations and z measures it in units of 1/2u generations. After z units of 
mutational time, a random pair of individuals will differ by i sites, with probability 
(Li 1977, eq. 5) 

Fj(T) = pj + e-r”+‘/e) ,$: (Fi-j(O) - pi-j) . (4) 

Tajima ( 1989) derives similar formulas for the number of segregating sites in a sample 
of arbitrary size. 

The simplest form of growth to consider is what we shall call the model of sudden 
expansion. An initial population, at equilibrium with 8 = 00, is assumed to grow (or 
shrink) rapidly to a new size at which 8 = 8,) and this burst of growth is assumed to 
occur z units of mutational time before the present. The assumption of initial equi- 
librium allows us to specify the initial distribution by using equation ( 3) with 8 = $. 
The & in equation (4) are also determined from equation (3), but with 8 = 8,. As 
figure 2 shows, this scenario generates a wave that travels slowly to the right and that 
looks much like the wave in the real data of figure 1. Indeed, figures 3 and 4 show 
that the waves in empirical distributions can often be fit well by this model. Di Rienzo 
and Wilson ( 199 1) and Slatkin and Hudson ( 199 1) fit a Poisson distribution to their 
distributions. To our eyes, their Poisson fit is noticeably worse than that of the model 
used here. The close fit of our model is encouraging but does not yet provide compelling 
evidence for a population expansion. We must consider the statistical properties of 
these waves before we draw conclusions from them. 

Fi 
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FIG. 2.-Evolution of distribution of pairwise differences. Pairwise-difference distributions for 0, = 2, 
8, = 200, and various values of 7, when it is assumed that 8 increased in value from C.4, to 8, at T units of 
mutational time prior to the present. 
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RG. 3.-Model of sudden expansion fit to data of Cann et al. ( 1987). The open circles show the 
observed distribution of pairwise restriction-site differences. The solid line was obtained by fitting 00, 01, 
and ‘c by using the method of nonlinear least squares. 

Waves in the Empirical Distribution 

The statistical properties of the empirical distribution of pairwise differences will 
be treated elsewhere. However, to motivate an interest in the theoretical distribution, 
we will show here that population growth reliably generates empirical waves such as 
those in figures 1 and 4 and that such waves are seldom generated in equilibrium 
populations. Neither ofthese findings follows obviously from the theory just discussed. 
The theory refers to an average over an infinite ensemble of realizations of the evo- 
lutionary process. Thus, to observe what the theory predicts, we would need to average 
the histograms of a large number of worlds, each with the same evolutionary history. 
In reality, of course, we have only a single world to study, so empirical distributions 

. 
can describe only a single realization of the evolutionary process. Consequently, there 
is no a priori reason to assume that empirical distributions will bear any strong resem- 
blance to the theory. Neither is there any a priori reason to assume that waves such 
as those in our figures are uncommon in equilibrium populations. 

To evaluate these issues, we generated random data sets by computer simulation. 
Figure 5 displays eight simulated equilibrium distributions (on the left) and eight 
simulated transient distributions (on the right). Each simulation used the coalescent 
algorithm (TavarC 1984; Watterson 1984; Lundstrom 1990) to generate a genetic 
sample of 147 individuals, equal in size to the sample on which the data in figure 1 
are based. The equilibrium simulations each assume that 8 = 100; the transient sim- 
ulations each assume that 6, = 2, 8, = 200, and 2 = 7. In each plot, the solid line 
shows the theoretical distribution implied by these parameters. These curves appear 
to vary in shape because the axes in each plot are scaled to the simulated data, which 
are shown as dots. 

The simulated equilibrium distributions bear little resemblance to their theoretical 
curve, in agreement with the data of Slatkin and Hudson ( 199 1). On the other hand, 
most of the transient distributions on the left bear a close resemblance to the theoretical 
curve. These curves are illustrative of a large number of others that we have generated. 
They suggest that the distribution of pairwise differences is far more informative in 
the transient case than in the equilibrium case. 

Some insight into the cause of this behavior can be gained by studying the coef- 
ficient of variation (CV) of the average pairwise difference within samples of some 
given size. In an equilibrium population, the expectation of the average pairwise dif- 
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FIG. 4.-Model of sudden expansion fit to data of Di Rienzo and Wilson ( 1991). The open circles 
show the observed distributions of pairwise nucleotide differences. The solid lines were fit as in fig. 3. Graph 
is modified from fig. 3 of Di Rienzo and Wilson ( 199 I ). 

ference is 8, and Tajima ( 1983, eq. 30) has derived an expression for its variance. 
Dividing 8 into the square root of Tajima’s result yields 

CV = (n+l) + 2(n2+n+3) “2 
3(n-1)8 1 9n(n-1) ’ 

where y1 is the size of the sample. Application of this formula shows that in equilibrium 
populations the CV is usually large. For example, if n = 150 and 8 = 2, then CV 
= 0.63. Increasing 8 to 400 reduces the CV only slightly, to 0.48. However, the path 
of the CV after a population expansion is anything but monotonic, as shown in figure 
6. Just after the expansion, CV drops rapidly to low values and then slowly rises toward 
the new equilibrium. The drop occurs because, immediately following a population 
expansion, the mean pairwise difference increases much more rapidly than its standard 
deviation. Much later, the standard deviation catches up, and the CV rises nearly to 
its previous value. This process is extremely slow. With the parameters assumed in 
figure 6, convergence is still incomplete after 1,000/2u generations. Because of this 
slow convergence, natural populations are likely to be far from equilibrium. Conse- 
quently, the mean pairwise difference is likely to be much closer to its expectation 
than an equilibrium model would suggest. 

In summary, there is reason to hope that statistical analysis of the pairwise- 
difference distribution will prove fruitful. We are now exploring the statistical properties 
of several estimators of 00, Or, and 2, which will be described elsewhere. In the mean- 
time, the simulations in figures 5 and 6 provide a rationale for our present concern 
with the theoretical distribution of pairwise differences. 
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FIG. 6.-Effect of population expansion on CV of average pairwise difference. Each open circle shows 
the CV of the average paitwise difference in a sample of 150 individuals, for O0 = 2, 9, = 400, and 1,000 
replicate simulations at each value of 7. The dotted lines show the theoretical CVs of the initial population 
at equilibrium with 9 = 2 and the eventual equilibrium population with 9 = 400. 

A Continuous Approximation 

Equation (4) is useful for calculating values of Fi (t), but it is too complex to 
provide much insight into the dynamics of the waves it generates. We turn, therefore, 
to a continuous approximation to the difference equations with which we began. 

The behavior of FO( t), as described by equation ( I), can be approximated by an 
ordinary differential equation, 

dF,/dt = l/N- [(2u + l/N)Fo]. (5) 

At equilibrium, 

&=b= 1/(2Nu+ 1). (6) 

Equation ( 5) is solved by 

F,(t) = b + (a - b)e-(2u+1’N)t, (7) 

where a = F,,( 0) is the initial value of F. and b is the equilibrium value defined by 
equation ( 6 ) . 

For i > 0, the behavior of Fj (t) is described by equation (2) and can be approx- 
imated by the partial differential equation 

af 
-=-flN-2u$, at (8) 

where f ( i, T) is a function with continuous arguments and approximates Fi ( 2). The 
solution of the equation, derived in the Appendix, is 
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1 
be-i/e + (a _ b)ei-T(l+lle) if i < 7 

f(i, 2) = 
eeef( i - 7, 0) ifir z 

(9) 

This result allows some generalizations about the effect that our three parameters have 
on the shape of the wave: 

The Wave’s Crest Is Determined by r 

Since the wave travels at rate 2u, its crest will be at z = 2ut after t generations. 
Figure 2 shows that this result holds approximately for the discrete equation, as well 
as for the continuous approximation discussed here. Thus, the location of the crest of 
the wave provides a rough idea of the time, in units of 1/2u, since the episode of 
population expansion. 

The Vertical Intercept Is Determined by 8, 

Equation (9) shows that the trailing (left) face of the wave converges toward its 
equilibrium exponentially, at rate T( 1 + l/8), which is greater than 2. Thus, by the 
time the wave has reached i = 4, the discrepancy between Fo and its equilibrium value 
will have been reduced to no more than ep4 = 2% of its initial value. This suggests 
that the vertical intercept might serve as a rough estimate of pt, = 1 /( 1 + 0,). Below, 
in the discussion of figure 8, we show that this holds approximately for the discrete 
model, equation (4)) as well as for the continuous approximation considered here. 

The Slope of the Wave’s Leading Face Is Determined by 80 

The leading face of the wave will have i > z. Thus, equation (9) shows that the 
leading face is simply the initial distribution, translated to the right by z units and 
reduced in height by a factor of e+‘. If this also holds for the discrete model, then 
equation ( 3 ) implies that 

&+i+l(z) e-“‘fii+l _ eO 
FT+i(T) = eFeFi 1 + 80 * 

Numerical experiments verify that this result also holds approximately for the discrete 
model. Thus, if the initial population was at equilibrium, then successive values of 
the leading face of the wave will be in a constant ratio, and this ratio is a simple 
function of Bo. The smaller the initial population (i.e., the smaller the value of eo), 
the steeper will be the leading face of the wave. 

The continuous approximation is useful in showing us why the process generates 
a wave, why the wave travels at rate 2u, and how the shape of the wave is affected by 
our parameters. However, it is not useful as a basis for data analysis, because the wave 
generated by equation (9) is narrower and more sharply peaked than that generated 
by the discrete solution, expressed by equation (4). Apparently, the increments of the 
discrete equation are too coarse to be well approximated by the continuous differential 
equation considered here. 

Other Trajectories of Population Growth 
Exponential Growth 

Waves are also generated by other trajectories of population growth, and the 
shape of these waves is remarkably insensitive to differences among trajectories. To 
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illustrate this insensitivity, we use the case of exponential growth. Several authors (Di 
Rienzo and Wilson 199 1; Slatkin and Hudson 199 1) have studied the effect of ex- 
ponential population growth on the probability that a random pair of individuals last 
shared a common ancestor x generations ago. However, no one has found an analytical 
expression describing the effect that such growth has on the distribution of pairwise 
differences. Nonetheless, we can use equation (4) iteratively to approximate exponential 
growth by a step function with a large number of steps. 

Consider the case of exponential growth from an initial, equilibrium population 
in which 8 = 1. We assume that the rate, p, of exponential growth is measured on a 
mutational time scale so that the population size after t generations has increased by 
a factor of ezU@ = ep’. We assume that p = 2, which corresponds to a rate, r = 4u, of 
exponential growth when time is measured in generations. After 8 units of mutational 
time, 8 has increased by a factor of 8.886 X 106. To approximate the pair-wise-difference 
distribution implied by this growth trajectory, we begin with an initial distribution 
given by equation (3) with 8 = 1. Then we apply equation (4) 40 times, each time 
setting z = 0.2 and increasing 8 by a factor of e”.2 ’ 2. This approximates the continuous 
exponential trajectory by a step function with 40 steps. The result is shown by the 
solid line in figure 7. 

For comparison, in figure 7 we have also drawn a dotted line showing the pairwise- 
difference distribution implied by instantaneous growth from an equilibrium popu- 
lation, with 8 = 1, to a larger population, with 8 = 1,000, assuming that we observe 
the population z = 8 units of mutational time later. The two curves are practically 
identical, in spite of the gross difference between the growth trajectories that produced 
them. Why should two such different trajectories produce such similar results? 

The answer is in figure 8, which shows the effect of varying Q1. As discussed 
above, 8, controls where the curve strikes the vertical axis but has little effect on either 
the location of the wave’s crest, the wave’s height, or the wave’s leading face. After 81 
has increased to a value several dozen times as large as eo, the vertical intercept is 
already so close to zero that further increases in 8, have a negligible effect. Thus, as 
the population grows, the details of its trajectory become less and less important. 
Exponential growth has the same implications as a sudden growth spurt, because, 

0.12 - 

Fi 
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RG. 7.-Implications of exponential growth. The solid line is an approximation of the pairwkedifference 
distribution generated by exponential growth from 8 = 1 to 0 = 8.886 X lo6 during 8 units of mutational 
time. The approximation replaces the smooth trajectory of exponential growth with a step function with 40 
evenly spaced steps. The dotted line refers to the model of sudden expansion with $ = 1, 8, = 1,000, and 
r = 8. 
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FIG. S.-Effect of varying 0,. Pairwise-difference distributions for 0, = 10, T = 4, and various values 
of 8, [3&, (solid line), 9@ (dashed line), and 2700 (dotted line)] show that, once the population has 
increased to several dozen times its original size, further increases have only a minor effect. 

after the population has increased by roughly two orders of magnitude, further growth 
has no noticeable effect. 

Bottlenecks in Population Size 

Tajima ( 1989, p. 599) has shown that the mean number of nucleotide differences 
responds to bottlenecks more strongly than does the number of segregating sites. We 
can study the first of these effects by using equation (4). If the population remains 
small long enough, it will converge to a new equilibrium, and the bottleneck model 
becomes equivalent to the sudden-expansion model. As we shall see in a moment (see 
fig. lo), convergence following a population reduction is rapid. Thus, the distinction 
between the bottleneck and sudden-expansion models is only meaningful if the bot- 
tleneck is short. The solid line in figure 9 shows the pairwise-difference distribution 
generated when an initial population, at equilibrium with 0 = 200, passes through a 
bottleneck that lasts 0.1 units of mutational time during which 9 = 0.1. After the 
bottleneck, the population resumes its original size, and we observe it 8 units of mu- 
tational time later. Clearly, bottlenecks can also generate waves in the distribution of 
pairwise differences. 

This raises the question, Can waves generated by bottlenecks be distinguished 
from those generated by sudden expansion from an equilibrium population? The 
dashed line in figure 9 is a least-squares fit of the sudden-expansion model to the curve 
shown for the bottleneck model. The two waves in the upper graph are similar, but 
they also differ in important ways. First, the bottleneck generates a wave with an 
extremely steep leading face. Second, as shown in the lower graph of the figure, the 
bottleneck model generates elevated upper-tail probabilities. Under the bottleneck 
model a pair of individuals differ by more than 25 sites, with probability 32%. The 
model of sudden expansion makes this probability only 2%. Consequently, bottlenecks 
should often generate ragged empirical distributions with many peaks at large values, 
like those seen in the simulated equilibrium distributions in figure 5. If this argument 
is correct, then the smooth empirical curve in figure 1 may imply that the expansion 
model is a better description of human demographic history than is the bottleneck 
model. Further work is needed to check this conjecture. 

Remnants of Larger Populations 

Figure 10 shows the effect of a lo-fold reduction in population size. The dashed 
line shows that, as in the case of an expansion, the left edge of the graph converges 
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FIG. 9.-Effect of bottleneck in population size. Upper graph: The solid line shows the theoretical 
pairwisedifference distribution produced by the bottleneck in the population size described in the text. The 
dashed line shows the best fit of the sudden-expansion model to the solid curve and is obtained with 9, 
= 4.797,& = 2,568.455, and z = 5.361. The dotted line shows the equilibrium distribution that would have 
obtained had the bottleneck not occurred. Lower graph: The curves show the upper-tail probabilities (the 
probability that the difference between a pair of individuals will exceed i) for the corresponding curves in 
the upper graph. 

quickly toward its new equilibrium, whereas convergence is much slower at higher 
values of i. The dashed-and-dotted line shows that convergence is nearly complete by 
z = 2. This behavior is explained by equation (9)) which shows that Fi (7) differs from 
its equilibrium by an amount proportional to e i-r(‘+“el). This process converges much 
faster when 8, is small-as it would be in the case of a drastic population reduction- 
than when l3r is large. 

Data Analysis 
Estimating u 

To relate these results to data, we must estimate U; this is not the mutation rate 
per nucleotide, but is that of the entire region of DNA under study. If we are studying 
DNA sequence data covering mr nucleotides, then u = mru, where u is the mutation 
rate per nucleotide. For restriction-site data, Nei and Tajima ( 198 1, eq. 5) derive a 
formula that can be expressed as 

u^=2pk, (10) 

where k is equal in expectation to the average number of nucleotide sites per haplotype 
that are covered by the restriction sites in the data. 

For example, Cann et al. ( 1987) say that the average individual was surveyed 
for restriction sites covering about k = 1,500 nucleotides and that the nucleotide 
divergence rate, 2u, is between 2%/Myr and 4%/Myr. If we assume that generations 
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FIG. IO.-Effect of reduction in population size. At time 0 a population at equilibrium with 8 = 10 is 
suddenly reduced in size so that 8 = I and then persists at this smaller size. The solid line shows the pairwise- 
difference distribution before the reduction, and the dotted line shows the new equilibrium. The dashed line 
shows that the left edge of the distribution converges toward the new equilibrium fastest, and the dashed- 
and-dotted line shows that convergence is nearly complete after 2 units of mutational time. 

are 25 years, then this implies that ~1 is between 2.5 X lo-‘/generation and 5 X lo-‘/ 
generation. Thus, li is between 7.5 X 10m4 and 1.5 X 10e3 in those data. 

The Date of the Expansion 

In figures 3 and 4 we have used the method of least squares to fit the sudden- 
expansion model to several sets of data. While we have no proof that this method is 
optimal, it does provide impressive fits. The statistical properties of these estimates 
are still under study and will be reported elsewhere. In the meantime, let us consider 
their implications. We consider first the estimates obtained from the data of Cann et 
al. ( 1987)) shown in both figure 3 and the first row of table 1. The estimate ? = 7.18 
implies that a population expansion began some 7.2/2u generations ago. The estimates 
of u that have been derived above put this at 2,400-4,800 generations, or 60,000- 
120,000 years ago, as shown in table 1. The estimate of f10 puts the initial population 
at 800- 1,600 females, and that of 8, puts the ultimate population at 137,000-274,000 
females. These ranges are not confidence intervals, but they are based on uncertainty 
concerning the mutation rate. The confidence intervals of these estimates are un- 
doubtedly much larger. 

The data of Di Rienzo and Wilson ( 199 1 ), shown in both figure 4 and the 
remaining rows of table 1, are based on DNA sequences from a stretch of 360 nucleotide 
sites within the “control region,” a segment of mitochondrial DNA that evolves ex- 
tremely rapidly. No wave is apparent in the pair-wise-difference distributions of the 
two African populations studied by Di Rienzo and Wilson, possibly because the African 
population did not experience either a bottleneck or a major episode of growth at the 
time of the origin of modern humans (Vigilant et al. 199 1). However, we should 
probably not read too much into Di Rienzo and Wilson’s African data, because their 
African samples are small. There are clear waves in the four non-African distributions 
shown in figure 4, so we have restricted attention to these. Ward et al. (accepted) 
estimate that the divergence rate in this region of DNA is 33% /nucleotide/Myr, and 
R. Lundstrom, S. Tavare, and R. H. Ward (personal communication) obtain a com- 
parable estimate by a different method. For generations of 25 years, this implies that 
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Table 1 
Estimates of Population Sizes and of Date of Expansion of Modern Humans 

li and 
Population &a Years Agob 

7.5 x lo+ c 
Worldd 

1.5 x 1o-3 e 
Worldd 

1.49 x 1o-3 r 
Sardinia* 
Japan8 
Middle Eastg 
American Indian+ 

2.163 X lo-“’ 
SardiniaB 
Japan8 
Middle EasF 
American lndiansg 

1.328 X 1O-4 i 
Sardinia% 
Japang 
Middle East& 
American Indian@ 

813 136,897 60,000 

1.621 273.193 120,000 

255 5,908 34,000 
0 25,827 52,000 
0 1,049,628 62,000 
0 9,612 51,000 

488 11,272 64,000 
0 49,268 98,000 
0 2,002,184 118,000 
0 18,337 97,000 

734 16,957 96,000 
0 74,116 148,000 
0 3,011,981 177,000 
0 27,585 146,000 

* 6J2iL Calculations were based on values of 6, and 6, from figs. 3 and 4. 
b 25?/2fi. Calculations were based on values of Z from figs. 3 and 4. 
c Assumes that nucleotide divergence rate is 4%/Myr (Cann et al. 1987). 
d Source: Cann et al. (1987). 
e Assumes that nucleotide divergence rate is 2%/Myr (Cann et al. 1987). 
fAssumes that nucleotide divergence rate is 33%/Myr (Ward et al., accepted). 
8 Source: Di Rienzo and Wilson (199 I ). 
h Assumes that nucleotide divergence rate is 17.3%/Myr (Vigilant et al. 1991). 
i Assumes that nucleotide divergence rate is I l.SW/Myr (Vigilant et al. 1991). 

p = 4.1 X 10e6/generation and that u = 360~ = 0.00149. This estimate was used to 
obtain the results shown in the second group of data in table 1, which indicate that 
all these populations underwent a population expansion 34,000-62,000 years ago. 

A more conservative estimate of the divergence rate in the control region has 
just been published by Vigilant et al. ( 199 1, p. 1506). They put the divergence rate 
at 1 lS%-17.3%/Myr, which implies that u = 1.328 X 10m4-2.163 X 10v4 and that 
u is between 5.175 X lop4 and 7.785 X 10e4. As shown in last two groups of data in 
table 1, these estimates of u imply an earlier date-i.e., 64,000- 177,000 years ago- 
for the population expansion. 

It is not clear which estimate of u is more accurate. Ward et al. (accepted) em- 
phasize that their estimate of the mutation rate makes a number of assumptions that 
will tend to bias it upward. This would introduce a downward bias into our estimates 
of the time in years since the population expansion. Thus, unbiased estimates would 
probably be somewhat larger than those in the second group shown in table 1. On the 
other hand, the estimates of Vigilant et al. are probably biased in the opposite direction. 
Whereas Ward et al.‘s estimate refers to exactly the region of DNA under study, the 
estimate by Vigilant et al. refers to a region that is nearly twice as large, including 
both hypervariable regions of the mitochondrial control region. Since the mean mu- 
tation rate per nucleotide is smaller in this larger region, the results of Vigilant et al. 
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should lead to an underestimate of u and, consequently, to overestimates of the time 
since the population expansion. Thus, the estimated dates in the last two groups of 
data in table 1 are probably too early. In spite of these uncertainties (and the additional 
uncertainty caused by sampling errors), the estimates obtained from the data in figure 
4 are in substantial agreement with that obtained from the world sample from Cann 
et al. ( 1987). The signature of an early population explosion appears in non-African 
populations throughout the world. 

The largest sample of human mitochondrial DNA is that assembled by Wallace 
and his colleagues and described most recently by Merriwether et al. (accepted). This 
sample has been studied using a set of six restriction enzymes, half the number used 
by Cann et al. ( 1987). Andrew Clark (personal communication) has estimated the 
number of substitutions between each pair of haplotypes, and from these he has tab- 
ulated the distribution of pairwise differences. The mode of this distribution is at 0, 
and it exhibits the sort of irregularities seen in the equilibrium distributions in fig- 
ure 5. We are at a loss to explain the difference between these data and those dis- 
cussed above. 

Discussion 

Much has been written lately about the age of the common ancestor of all human 
mitochondria (Brown 1980; Cann et al. 1987; Vigilant et al. 1989, 199 1; Hasegawa 
and Horai 199 1). The dates that have been proposed are widely quoted in articles 
dealing with the origin and expansion of modem humans. Yet, it is not clear that they 
have any real bearing on this subject. Our common mitochondrial ancestor probably 
lived well before the origin of modern humans, and an accurate date of her lifetime 
would not tell us when, where, or how modem humans evolved. 

The history of late Pleistocene population growth, on the other hand, is a matter 
of considerable importance, for it can help to distinguish between the “replacement” 
and “multiregional” hypotheses of modern human origins (Stringer and Andrews 
1988; Wolpoff 1989). The replacement hypothesis holds that, some 40,000-120,000 
years ago, modem Homo sapiens expanded throughout the world (Klein 1989)) re- 
placing existing populations of H. erectus and archaic H. sapiens. In terms of our 
parameters, the replacement hypothesis requires both that 8, be significantly greater 
than 80 (otherwise there is no evidence of expansion) and that z (which measures, on 
a mutational time scale, the time of the expansion) be consistent with 40,000- 120,000- 
years-ago interval during which modem humans are thought to have originated. The 
data summarized in table 1 seem consistent with these expectations and thus provide 
some support for the replacement hypothesis. 

Yet the evidence for a population expansion does not weigh against the multire- 
gional hypothesis, for this hypothesis does not preclude a population expansion during 
this period. However, the multiregional hypothesis is not consistent with the notion 
that, prior to the expansion, the human population contained ~2,000 females. The 
multiregional model holds that vast regions of Europe, Africa, and Asia were contin- 
uously inhabited, and this could not have been accomplished by a population so small. 
For example, if 1,000 females were evenly distributed over this area, which contains 
-80 million km2, the distance between neighboring females would have been -300 
km. It is more likely that they would have been aggregated into groups; and the distances 
between these groups would necessarily have been even larger. It is doubtful that 
mating could have occurred over such distances. Thus, if our estimates of No are even 
approximately correct, then the multiregional hypothesis must be false. 
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However, this analysis will not settle the issue. The standard errors of our estimates 
are as yet unknown and may well be large. In addition, there are several sources of 
bias in our estimates of population size. Estimates of $ (and thus of No) are probably 
biased by the assumption that the initial population was in equilibrium. In the model 
of sudden expansion from equilibrium, the slope of the leading face of the wave is 
determined by the size of the initial population. The smaller this population, the 
steeper will be the wave’s leading face. However, bottlenecks also tend to make this 
face steeper. Thus, if the waves in the data were produced by bottlenecks, then our 
estimates of O0 may be unrealistically low. In addition, our estimates of 8, (and thus 
of N, ) are probably biased because of the fact that the human population is geograph- 
ically structured. Mating is not at random but usually occurs between close neighbors. 
This inflates the value of F0 and may account for the elevated left shoulders of the 
distributions for Sardinia and American Indians in figure 4. These inflated values of 
F. cause a downward bias in estimates of 8,. Thus, our estimates of population size 
are probably all biased downward. 

The Amerindian data show evidence of a population expansion that began during 
the period when modern humans were first expanding through the Old World. Con- 
ventional wisdom holds that the Americas were not colonized until - 12,000 ago, 
and even the earliest respectable dates (Dillehay and Collins 1988) would not place 
this event much earlier than 33,000 ago. Other research has suggested that the original 
colonists passed through a narrow bottleneck at this time (Wallace et al. 1985). This 
narrow bottleneck should have generated a recent wave in the distribution of pairwise 
differences; yet, no such wave appears. This suggests that the Amerindian bottleneck, 
if one occurred, was not pronounced. A similar conclusion has been reached by Ward 
et al. (accepted). 
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APPENDIX 

At equilibrium the time derivative is 0, and equation ( 8) becomes an ODE, df/ 
di = - f/2uN, which is solved by 

f(i) = j=( 0)e-‘/2UN , (11) 

where the argument of f is the number of differences between a random pair of 
individuals. To determine the initial value, f(O), we assume that the probability 
distribution of i is the sum of a discrete component at i = 0 and a continuous 
component for i > 0. Since any probability distribution must integrate to unity, 

1=&+ 
s 

O*f( i)di . 

Substituting equations (6) and ( 11) leads to!(O) = FO. 
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To find a nonequilibrium formula, substitute g = fe’lN into equation (8), 
producing 

ag/at = -2uagldi. (12) 

This is the equation for a nondispersive wave, traveling at rate 2u (Strang 1986, p. 
542). Since f = gemtIN, we conclude that the wave in ftravels at rate 2u and that its 
amplitude decreases exponentially at rate 1 /N. 

Equation ( 12) is solved by h( i - 2ut), where h is an arbitrary function. Thus, 

f( i, t) = e-‘lNh( i - 2ut) (i > 0) . (13) 

The function h must be determined from boundary conditions, of which there are 
two. First,f( i, 0) must match the initial distribution, which can take any form. This 
implies that h(x) = f( x, 0) if x > 0. Second, the probability distribution of i 
must integrate to unity at each value oft. As before, we assume that this distribution 
is the sum of a continuous component and a discrete component at 
i = 0. Thus, 

1 = F,(t) + 
s 
omf(i, t)di. (14) 

Substituting equations (7) and ( 13) produces 

s 00 

h(x)& = (1 - b)e’lN - (a - b)e-*” . 
-2ut 

Taking the derivative with respect to t leads to 

h(x) = be-X’21UY + (a - b)eX (x < 0) 
f(i) = e-‘lNh(i - 2ut) = be-i/2uN + (a - b)ei-(Zu+llN)t (i < 2ut) . 

Putting this together with the result for x > 0 and then reexpressing the result in terms 
of 8 = 2Nu and r = 2ut produces equation (9). As z + 00 , this equation implies that 
f(i, 7) + be-‘@, in agreement with equation ( 11). 
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