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Abstract

The model developed here is used to study the evolution of re-
productive strategy in a sexual population with heritable wealth. In
contrast to earlier haploid models, the present model implies that at
evolutionary equilibrium the wealthy must out-reproduce the poor.
Thus, the negative correlation between wealth and fertility in many
modern populations is probably not an evolutionary equilibrium. At
evolutionary equilibrium, there are strong correlations of long-term
fitness both with wealth and with fertility. This suggests that selec-
tion will have favored a psychology with both material motivations (a
desire for wealth) and reproductive motivations (a desire for sex and
children). Since the two correlations are of roughly equal magnitude,
there is no reason to suppose that either motivation will dominate.

1 Two questions

What reproductive strategies are favored by natural selection in a world
where wealth can be inherited? Heritable wealth introduces several inter-
esting wrinkles. First, there is the trade-off between the number of one’s
children and their wealth. A parent cannot simultaneously maximize both.
Second, there is the question of how fitness should be defined. It makes
no sense to equate fitness with the number of children, because the par-
ent whose children are many may lose in competition with parents whose
children are fewer but wealthier.
These observations suggest two questions. First,
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o Is it true that at evolutionary equilibrium the wealthy must out-reproduce
the poor?

An affirmative answer would follow from the assumptions that (a) selection
favors those who produce the most offspring, and that (b) a wealthy person
has all the opportunities available to a poor person and more. If this were
true, then selection should lead to an equilibrium at which the wealthy
produce at least as many offspring as the poor. Yet human females do not
behave this way, and this has been a source of consternation for evolutionary
ecologists (Vining, 1986). But I have already suggested that assumption (a)
need not hold when wealth can be inherited. Thus, there may be no cause
for consternation.

A second question involves the psychology of motivations. I shall dis-
tinguish reproductive motivations (the desire for children) from material
motivations (the desire for wealth). I will assume without proof that (1) the
strength of selection for reproductive motivations depends on the correlation
Tkids between fitness and the number of one’s surviving offspring, and that
(2) the strength of selection for material motivations depends on the corre-
lation rweaith between fitness and wealth. These assumptions imply that if
Twealth > Tkids, then selection should favor a psychology dominated by ma-
terial motivations, while the opposite should be true then ryeath < Tkidgs- In
the absence of heritable wealth 745 = 1 and 7weath < Tkids- Lhus, selection
should favor a psychology in which reproductive motivations were dominant.
It is not clear what to expect when wealth is heritable. Thus, I shall ask:

e Under what circumstances, if any, s Twealth large relative to Tiigs ?

2 Previous work

Henry Harpending and I have written two previous papers on this subject.
In the first (Rogers, 1990), I calculated optimal reproductive strategies in
a model with heritable wealth. I will not describe that model in detail,
since it differs from the one described below in only one respect: the earlier
model assumed clonal inheritance: that each each individual was genetically
identical to her single parent. The clonal model was convenient because
the fitness of an individual could be equated with the ratio of increase of
the clone comprising her descendants. Under mild assumptions, this ratio
converges to a stable value A. The optimal reproductive strategy is the one
that maximizes .

A can also be interpreted as the dominant eigenvalue of a matrix G,
whose ijth entry is the expected number of offspring of wealth ¢ per parent
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Figure 1: An evolutionary equilibrium under clonal inheritance
Source: Figure 2 of Rogers (1990).

of wealth j. The procedure for calculating G involved assumptions similar
to those in the sexual model described below, and will not be repeated here.
Once an optimal strategy has been found, the clonal assumption also makes
it easy to calculate the stable wealth distribution h, (the vector whose ith
entry is the equilibrium proportion of the population in wealth category i),
and the vector w of long-term fitnesses (whose ith entry is proportional to
the number of descendants that an individual of wealth ¢ will produce in the
long run, that is, in the limit as time goes to infinity). These vectors are,
respectively, the column- and row-eigenvectors of G that are associated with
A, the dominant eigenvalue. They are analogous to the stable age distribution
and the vector of reproductive values from classical demography (Keyfitz,
1968).

The optimal strategy under one set of assumptions (see the original pa-
per for details) is described in figure 1. That result provided surprising
answers to both of the questions raised above: Even at evolutionary equilib-
rium, fertility need not be a non-decreasing function of wealth, and ryeaith
may greatly exceed riiqs- In a world such as that described in figure 1,
fertility would be a poor measure of fitness, and selection should favor a



psychology dominated by material motivations. The paper went on to show
that rwealth > Tkigs in harsh environments, whereas ryeath < Tkids in mild
ones. Thus, selection should favor material motivations most strongly in
harsh environments.

The model underlying these conclusions was unrealistic in many ways,
but two of these seem especially important. The first is that of clonal inher-
itance. Under this system, my descendant ten generations hence would—
apart from the minor effect of mutation—be genetically identical to me.
Under sexual reproduction, on the other hand, this descendant would share
few genes with me. Thus, increasing the wealth of this descendant would
increase my fitness more in the clonal case than in the sexual case. My as-
sumption of clonal inheritance probably inflated the importance of heritable
wealth.

A second assumption introduced an opposite bias. I assumed that, in
addition to inheriting wealth, each individual earned some wealth on her
own. This earned wealth was a Poisson random variable, with a distribution
that did not depend on the wealth inherited. Thus, offspring of rich parents
earned the same amount on average as the offspring of poor parents. In
reality, inherited wealth often facilitates the acquisition of additional wealth.
It would have been more reasonable to assume a positive regression of earned
on inherited wealth. Thus, my independence assumption probably reduced
the effect of heritable wealth.

Since the two false assumptions produce opposite biases, it is not clear
whether their net effect makes heritable wealth more or less important than
it should be. To find out, we need a model that incorporates sexual reproduc-
tion. Harpending and I (1990) extended the linear mathematics of the first
paper to the sexual case. However, that algebra holds only at demographic
equilibrium, and does not provide a means of finding this equilibrium. Thus,
we were unable to calculate optimal reproductive strategies.

Below, section 3 will extend the earlier model to deal with sexual repro-
duction and to make earned wealth depend on inherited wealth. Section 4
will describe the algorithm used for finding evolutionary equilibria. Results
are presented in section 5 and discussed in section 6.

3 Model of a monoecious sexual population

The model incorporates sexual reproduction, but has only one sex: each
individual is able to mate with any other. I am assuming, in other words,
monoecious sexual reproduction. This allows me to incorporate the effects of



sex while neglecting the complexities that are introduced by separate sexes.
In addition, I assume that generations are discrete and non-overlapping.
Individuals of each generation are classified into a finite number K of discrete
wealth categories.

In order to find optimal reproductive strategies, we must be concerned
with two kinds of equilibria: demographic and evolutionary. A population
at demographic equilibrium is one with in which the relative frequencies of
individuals within wealth classes do not change. This demographic process
is described in section 3.1. A population is at evolutionary equilibrium when
its members have a genotype with higher fitness than any other genotype
would have when rare. The evolutionary process is described in section 3.2.

3.1 A genetically homogeneous population

A homogeneous population can be described by the number n;(t) of individ-
uals of wealth 7 in generation ¢, where i = 0,1, ..., K—1. The column-vector
whose ith entry is n;(¢) will be denoted by n(¢). The total population size
in generation ¢ is N(t) = Y, ng(t).

To describe the production of each new generation, I extend Pollak’s
(1990) birth-matrix-mating-rule model to deal with the case in which off-
spring are classified into K categories. The expected number of wealth 7 in
generation ¢ + 1 can be written as

ni(t+1) =) bijrpujxn(t)] (1)
ik

where b;;; is the expected number of offspring of wealth ¢ produced by
a mating between parents of wealths j and k, and u;;[n(t)] the expected
number of such matings, a function of n(¢). A demographic equilibrium
is defined by a vector n(¢) such that n(¢ + 1) is proportional to n(¢). The
conditions under which such equilibria exist can be specified under restricted
versions of this model (Caswell, 1989; Pollak, 1990), but are unknown in
the general context considered here. In later sections, equilibria are found
numerically using an algorithm based on recursion 1.

To show how this recursion relates to the linear mathematics of clonal
populations (Rogers, 1990; Rogers, 1992) (or of classical demography), I
re-express it as

n(t+1) = Gn(?) (2)

where G is a matrix whose ¢jth entry g;; is the expected number of offspring



of wealth i per parent of wealth j. Equating the two recursions shows that

_ gy, takm()]
Gij ; bljk ’)’Lj(t) (3)
In general, G is a function of n(¢), and will change each generation. Thus,
we cannot project the population into the future simply by iterating (2)
with constant G. The familiar linear mathematics of classical demography
no longer apply.

On the other hand, if the population does reach an equilibrium, the linear
mathematics become useful. It is reasonable to assume that the mating
function w;;[n] is homogeneous of degree 1, i.e. that

uijlan] = au;;[n]

for any scalar a'. This says, for example, that doubling the number of in-
dividuals will double the number of matings between each pair of wealth
categories. When this assumption holds, g;; will depend only on the relative
frequencies of individuals within wealth categories. At equilibrium, these
relative frequencies do not change and therefore neither does g;;. Equa-
tion 2 is then linear, and the standard results of stable population theory
apply (Rogers, 1990; Harpending and Rogers, 1990; Rogers, 1992). Given
particular assumptions about b;;; and u;;[n], we can use numerical methods
to find equilibria and then interpret them in the ordinary way. We can, for
example, use the methods described above in section 2 to calculate the ratio
A of increase, the vector w of long-term fitnesses, and the stable wealth dis-
tribution h. What we cannot do is specify, in general, the conditions under
which equilibria will exist.

Adding sources of variation to a model usually makes it harder to study,
rather than easier. Yet adding genetics to this model provides a way around
its nonlinearity. The trick is to ask a slightly different question. Rather than
seeking demographic equilibria, we seek to determine the circumstances un-
der which a rare allele can invade a population dominated by some other
allele. A strategy that cannot be invaded is an “evolutionarily stable strat-
egy,” or ESS (Maynard Smith, 1982).

3.2 When can a rare allele invade?

Consider the dynamics of a rare allele B in a population dominated by
a common allele A. Superscripts 1, 2, and 3 will indicate genotypes AA,

L A rationale for this assumption is discussed by Pollak (1990, p. 406).



AB, and BB, respectively. For example, n§-2) (t) denotes the number of

AB individuals of wealth j in generation ¢, and uﬁ’l)[n(l)(t), n(?(t)] is the
expected number of matings in which one parent has genotype AB and
wealth j while the other has genotype AA and wealth k.

Since B is rare, we need consider only two genotypes (AA and AB),
and two types of mating (AA x AA and AA x AB). The other genotypes
and mating types are negligibly rare. Prior to the introduction of B, all
individuals were of genotype AA, and I assume that this population was
at equilibrium. At this equilibrium, the relative frequency of individuals of
wealth ¢ is a constant pgl), and in each generation the population increases
by a constant ratio A1), ie. N (¢t 4+ 1) = AN (¢). While B is rare,
its effect on the demographic parameters of AA will be small. Thus, any
departures of AA from this equilibrium will be small enough to neglect. The
AA component of the population will continue to increase by a factor of A(1)
each generation.

The AB component of the population reproduces itself via matings of
type AA x AB, whose offspring are evenly divided between genotypes AA
and AB. Of these, the AA offspring can be ignored since they are rare
compared with the offspring of AA x AA matings. The AB offspring, on
the other hand, are of central concern: their number in each generation is
approximately equal to the number of copies of the B allele. Thus, if AB
increases at a ratio faster than \(!) then the B allele will increase when rare.
This ratio of increase is determined from the equation,

e = 5 S 0w, 0] (1

J

The factor of 1/2 here arises because only half of the offspring produced
by an AA x AB mating are of genotype AB. This factor does not appear
in equation 1, a fact that seems to impose a two-fold disadvantage upon
the AB component of the population. However, this apparent disadvantage
is exactly offset by less obvious advantage: the number of unions (i.e. the
sum of u;) equals half the number of individuals in equation 1, but equals
the total number of AB individuals in equation 4 (see equations 7 and 11
below).

Equation 4 can also be expressed as

n@(t+1) = c>Vn@ ) (5)



where G is a matrix whose ijth entry

20 (1), n()]
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is the expected number of offspring of wealth 7 per parent of wealth 5. So far,
the algebra is identical to that of the homogeneous population considered
above. The important difference here is that equation 5 is approximately

linear when allele B is rare, provided that u( o

(2) (1)

and is a function only of n; " and ny .

is homogeneous of degree 1

(2)

To see why this is so, expand uﬁ’l)[n,(cl),nj ] in Taylor series about

(2 (2))2 (2,1)[ (1)

n; ) — 0, drop terms in (nj , and note that Usp [y, ,0] = 0 since there
can be no matings involving AB when this genotype is absent. This gives

ou (2 1)[ (1) 0]
szk] 2)
onj

(2)

Since n; does not appear here, it is clear that g;; does not vary with the

(1)

number of AB individuals. Neither does it vary with n; ’. This follows from
the fact that, since uﬁ D i homogeneous of degree 1, the derivative here is
homogeneous of degree 0 (Varian, 1984, p. 330).

For example, if mating is at random, and all AB individuals find mates,

then
2,1 2 1

(1)

The relative frequencies p; ’ are approximately constant, since the AA com-
ponent of the population is at approximate equilibrium.

The constancy of g(;’l)

i implies that the AB component of the popula-
tion will converge to a stable distribution of wealth categories given by the
leading right-eigenvector of G(31) and will then grow at a ratio given by the
corresponding eigenvalue A1) of this matrix. Since the A4 component of
the population is still increasing at ratio A(}), it follows that B will increase

in frequency when rare if and only if

and

A2 5 M) (9)



This argument applies also to the case in which B is common and A is
rare. In that case, B increases when

A2 5 2\(12) (10)

where A® is the equilibrium growth ratio of a pure BB population, and
A(1:2) the ratio of increase of AB in a population dominated by BB.

Inequalities analogous to 9 and 10 are widely used within evolutionary
ecology for populations structured by age (Charlesworth, 1980, section 4.3).
The present results generalize these to the case of populations structured by
arbitrary categories, such as social class or levels of wealth.

3.3 Mating

I assume that mating is at random, both with respect to wealth category and
genotype. Under this assumption, the unions matrix uﬁ’l) for rare individ-
uals of genotype AB is given by equation 7. In a homogeneous population,
the unions matrix for AA individuals is

win(o)] = 50 (1)

The denominator 2N(t) is chosen to make };; u;;[n(t)] = N(t)/2, as is
appropriate if all individuals form pairs.

3.4 Reproduction

A reproductive strategy will be represented as a vector whose ith entry
determines the allocation to fertility when the bearer’s wealth is 7. For
example, if there were only K = 3 levels of wealth, one feasible reproductive
strategy is v = (0,0,1). An individual with this strategy would allocate 0
units of wealth toward fertility if her own wealth was either 0 or 1, and 1
unit if her own wealth was 2.

I assume that the two individuals in a union make independent allo-
cations to fertility, as determined by their own wealth and strategy, and
independent of the allocation made by their partner. These assumptions
serve simplicity more than realism, and might usefully be revised in future
work.

A family’s allocation to fertility is the sum of the allocations made by the
two partners. For example, consider a union between two individuals who
share strategy v, but who have wealth 1 and 2 respectively. According to
strategy v, the first parent’s fertility allocation will be 0, that of the second



1. The family’s fertility allocation will be the sum of these, or 1. The wealth
not allocated to fertility is inherited by the children produced. Our example
family has wealth 142 = 3, and bequeaths 2 units of wealth to its children.
Inherited wealth is divided among the children as evenly as possible.

A family that allocates z units of wealth to fertility will produce

0 AR}
m(:v) = { Round [m+(1 _ 6705(517*54-1))] z>s (12)

children. m(x) is called the “fertility function,” and is graphed in the upper
panel of figure 2. No children are produced at all if the family allocation
is less than s, the “starvation threshold.” Above this threshold, fertility
increases with allocation at a decreasing rate toward a maximal value, m .
The rate of increase is determined by a third parameter, a. m(z) is rounded
to the nearest integer for computational convenience.

I assume that heterozygous AB individuals exhibit, with equal proba-
bility, either the strategy of AA or that of BB.

3.5 Earned wealth

In addition to inherited wealth, each offspring earns some wealth on her
own. The wealth y earned by an individual who inherits z units of resource
is a Poisson random variable with mean

E{y}=B+x

~ can be interpreted as the regression of earned on inherited wealth. When
v = 0, earned and inherited wealth are independent as my earlier paper
assumed.

If z +y > K, then the individual’s wealth is truncated back to K — 1.
This truncation models nothing in the real world, and is done solely for
computational convenience. In the earlier paper (Rogers, 1990), I showed
that it made little difference.

These assumptions are sufficient to determine all of the quantities defined
in sections 3.1 and 3.2.

4 Searching for equilibria

4.1 Demographic equilibria

The simplest algorithm for finding demographic equilibria begins with some
arbitrary initial wealth distribution and iterates equation 1 until the wealth

10
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distribution becomes nearly constant. Then, the ratio of increase is calcu-
lated as A = N(¢t+1)/N(t). I will refer to this as the method of forward it-
eration. Unfortunately, if an accurate answer is desired, this method usually
takes a large number of iterations. However, a small number of iterations—
I use no more than six—is usually sufficient to reach the neighborhood of
an equilibrium. Then, the equilibrium can be “polished” using the faster
method of inverse iteration.

The method of inverse iteration is a well-known algorithm for finding se-
lected eigenvectors of a matrix. Given initial estimates of A and of the stable
wealth distribution, each inverse iteration improves these estimates. I mod-
ified the standard algorithm (Press et al., 1988, pp. 394-395) only slightly,
by using equation 3 to recalculate G at the beginning of each iteration. The
resulting algorithm usually converged rapidly.

When the inverse iterations did not converge, the two-stage process was
repeated again with a new, randomly chosen, initial vector. As many as
five initial vectors were tried. This algorithm nearly always converged. Fur-
thermore, extensive experimentation failed to identify any cases in which
different initial vectors lead to different equilibria. Thus, the demographic
equilibria in this model appear to be unique.

4.2 Evolutionary equilibria

For each set of parameter values, the goal is to find an evolutionarily stable
strategy, or ESS (Maynard Smith, 1982). An ESS is a strategy whose fit-
ness is higher, when common, than that of any possible invading strategy.
My search algorithm begins with an arbitrary initial strategy, and pits this
against each possible one-step perturbation. Here, a one-step perturbation
is a strategy that differs from the old by +1 in exactly one position. When
a better strategy is found, the new strategy replaces the old and the pro-
cess begins again. The search ends when it finds a strategy that cannot be
improved by any one-step perturbation.

In comparing an old strategy A with a new one B, I calculate four ratios
of increase:

AL = ratio for pure AA population
AZD = ratio for rare ABs with AA common
A2 = ratio for rare ABs with BB common
A2 = ratio for pure BB population

I will say that AB invades AA if A1) < X2 and that AB invades BB if

12



A2 < X12) | In comparing two strategies there are four cases to consider.

First, if AB invades AA but not BB, then BB is an ESS but AA is not.
In this case, the search algorithm replaces A with B and continues.

Second, if AB invades BB but not AA, then A is retained and B rejected.

If neither of these cases holds, then there is at least one internal equi-
librium which may be either stable or unstable. In these cases, the search
algorithm accepts B if \(&) > A1) and rejects it if this inequality is reversed.
Ties occur when A ~ A®) | to within the limits of numerical precision.
When an upper bound on optimal investment is sought, ties are decided in
favor of the strategy investing more. The reverse is true when a lower bound
is sought.

This procedure ignores internal equilibria (mixed ESSs), and conse-
quently may stop at a strategy that is not an ESS. However, in practice
this seldom happens. Almost always, the upper and lower bound on opti-
mal investment enclose a region that is stable against invasion from outside
the region.

5 Results

Figures 3 and 4 illustrate optimal reproductive strategies calculated from
two sets of parameter values. The second differs from the first in that g is
reduced from 3 to 1, and +y increased from 0 to 1. Thus, figure 4 describes a
world in which wealth is harder to earn for those who inherit little, but easier
to earn for those with an ample inheritance. The two optimal reproductive
strategies are identical for wealth levels 0 through 4. At higher wealth
levels, less is allocated to fertility in figure 4 than in figure 3. This makes
sense: inherited wealth has become more important, so wealthy parents are
emphasizing quality at the expense of quantity.

Note that fertility is a non-decreasing function of wealth in both figures.
With sexual reproduction, I have been unable to find parameter values that
generate a decreasing or non-monotone relationship such as that shown for
the case of clonal inheritance in figure 1. I cannot guarantee that non-
monotone equilibria do not exist under sexual reproduction, but I have yet
to find one. This provides a tentative negative answer to the first of the
two questions with which I began. It seems unlikely that the negative rela-
tionship observed in many western countries can represent an evolutionary
equilibrium.

Let us turn now to the second question, which asks when, if ever, the
correlation of long-term fitness with wealth exceeds that with fertility. The

13
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stable wealth distributions in the two figures shows that at equilibrium,
mean wealth is lower in the second. Thus, figure 4 appears to describe a
harsher world than than in figure 3—an impression that is confirmed by the
two values of A\. Note that ryeaith > Tkigs in the harsher environment, while
the reverse is true in the milder environment. This pattern is consistent
with that found under clonal inheritance in my earlier paper (Rogers, 1990)
(see section 2).

But before reaching any conclusion, let us examine a wider range of
parameter values. This is done in figure 5 for the case in which earned
wealth is independent of that inherited (y = 0).

The two perspective drawings in the figure show how ryiqs and ryweaith
vary over a wide range of value of s and 8. In each drawing, the environment
is harshest at the left corner, where the starvation threshold (s) is large and
mean earned wealth (8) small. The environment improves as one moves
from left to right, and is mildest in the right corner.

In my earlier paper, 7ygs was near zero in harsh environments, near
unity in mild ones, and undefined at the extreme right-hand corner of the
drawing (Rogers, 1990, fig. 5). Here, in figure 5, the pattern is similar in
that riq4s increases from left to right, but it is never as low as in the other
analysis. Sexual reproduction seems to have greatly increased the correlation
between fertility and long-term fitness. Thus, fertility is a much better proxy
for fitness than the earlier study implied.

In the earlier paper, ryeath Was near unity in harsh environments, and
decreased to low values in mild ones. Its pattern in figure 5 is quite different,
having highest values in environments of intermediate quality. Thus, the
conclusions of the previous paper do not hold when sexual reproduction is
added to the model.

But as I suggested above, the original model was unrealistic in two im-
portant respects, and only one of these is corrected in figure 5. This figure,
like my original analysis, assumes that earned and inherited wealth are in-
dependent. This second problem is corrected in figure 6, which assumes
that the regression of earned on inherited wealth is v = 1. This figure ex-
hibits a pattern much like that of the original analysis. The correlation 7qs
between fertility and fitness is highest in mild environments, while the cor-
relation 7ryeaith between wealth and fitness is highest in harsh environments.
Thus, harsh environments may in fact select for a material motivations, and
mild environments for reproductive motivations.

But although the present analysis does confirm the pattern detected
earlier, it has different implications concerning the magnitude of the cor-
relations. This is seen most easily in figure 7. There, panel A graphs the
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Figure 6: Response of ryjqs and ryeaitn to s and S
Parameters: m4 =6, v = 1.
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correlations in figure 5 against A, the ratio of increase, and panel B does
the same for the correlations in figure 6. What is impressive about these
correlations—especially those in panel B—is that most of them are very
large. The range of A here is unrealistic. We can safely ignore all but the
region near A = 1. In this region, both correlations are always large. Thus,
the present model implies that fertility and wealth are both excellent proxies
for fitness. In a world such as that described here, there is no reason to
expect either kind of motivation to dominate.

6 Discussion

Modern economics recognizes a variety of motivations, including the de-
sire for children (Becker, 1981). Nonetheless, many economic models ac-
cord primary importance to material motivations. For example, Friedman
(1953, p.171) observes that the assumption of “single-minded pecuniary self-
interest. .. works well in a wide variety of hypotheses in economics bearing
on many of the mass phenomena with which economics deals.” Both the
intuitive appeal of this theory and its predictive success argue that material
motivations are important. Yet it does not follow that their importance is
paramount.

Human sociobiology would explain material motivations in terms of their
effect on short-term reproductive success. Those who acquire more resources
are able to devote more resources to producing offspring, and thus gain
higher fitness. In this theory, material motivations are subordinate to re-
productive ones. We desire material goods only in order to facilitate repro-
duction. Thus, we should not desire more resources than we can use for
reproduction. The very wealthy should not desire additional wealth.

In this account, the theory of reproductive motivations is more general
than that of material motivations, for it tells us when the latter theory
will apply. Thus, the theory of reproductive motivations subsumes that of
material motivations. The latter is a simplified approximation to the former,
applicable only in a restricted set of circumstances.

But there is evidence contrary to this view. The very wealthy go on
increasing their own wealth, in spite of the negligible effect this has on their
own reproduction. Data from western countries often show a negative re-
lationship between wealth and the fertility of females (Vining, 1986). This
is easy to understand in a theory of material motivations, since the oppor-
tunity cost of child care is higher for the wealthy than for the poor. These
data are, however, hard to reconcile with a theory that makes reproductive
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motivations paramount. Similarly, the theory of reproductive motivations
struggles with the “demographic transition,” a historical decline in the fer-
tility of developed countries. As productivity increased in these countries,
the limits to fertility must have relaxed. Thus, a theory of reproductive
motivations implies that fertility should rise with productivity, rather than
falling as it did in fact. The theory of material motivations makes short
work of this problem: The rising productivity of these countries would in-
crease the opportunity cost of time devoted to child care, favoring a shift to
smaller families.

The results presented here suggest a way to reconcile these data with
the supposition that human motivations evolved by natural selection. In
a world with heritable wealth, wealth has value over and above its effect
on the number of one’s offspring. By continuing to earn, a rich person can
increase the wealth of descendants several generations removed. Thus, the
marginal effect of wealth on fitness may remain positive even among the very
wealthy. Furthermore, the model suggests that wealth and fertility may be
of roughly equal value in estimating fitness. At evolutionary equilibrium,
material and reproductive motivations should both be important. In such a
world, material motivations would be in no sense subordinate to reproduc-
tive ones. Resources should be valued even when they have no immediate
effect on reproduction.
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