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Abstract

A review of genetic evidence leads to the following conclusions concerning human population
history: (1) Between 33,000 and 150,000 years ago, the human population expanded from an
initial size of perhaps 10,000 breeding individuals to reach a size of at least 300,000. (2) Although
the initial population was small, it contained at least 1,000 breeding individuals. (3) The human
races separated several tens of thousands of years prior to their separate expansions. (4) Prior
to their expansions, the separate racial populations were small.

These inferences are inconsistent with both the multiregional and the replacement models
of modern human origins. They support the Weak Garden of Eden Hypothesis, which holds
that the human populations separated some 100,000 years ago, but did not expand until tens
of thousands of years later.

In recent years, genetic evidence has played an increasing role in discussions about the origin of
modern humans. More often than not, the discussion has been heated. Opinions about the value
of genetic evidence range across all possible extremes. Even those who think the evidence of value
disagree about what it implies.

The debate has focused on two competing hypotheses (Stringer and Andrews, 1988). According
to the Multiregional Hypothesis, the major subdivisions of our species evolved in situ over a long
period of time, with gene flow accounting for much of the similarity now observed among groups
(Wolpoff, 1989; Frayer et al., 1993). In contrast, the Replacement Hypothesis holds that earlier
populations were replaced 30,000-100,000 years ago by populations of anatomically modern humans
that originated in Africa (Stringer and Andrews, 1988).

Recently, new models and statistical methods have provided new ways to use genetic data in
testing hypotheses and estimating parameters related to demographic history (Rogers and Harpend-
ing, 1992; Harpending et al., 1993; Rogers, 1994a; Rogers, 1994b). These estimates led Harpending
et al. (1993) to introduce a third hypothesis of modern human origins. Their Weak Garden of Eden
Hypothesis holds that a small ancestral human population separated into several partially isolated
groups approximately 100,000 years ago. Then, some 30,000 years later, these groups underwent
either simultaneous bottlenecks or simultaneous expansions in size. The new window into demo-
graphic history also provides new insights into the meaning of other forms of genetic data. In this
paper, we review these new findings, and use them to re-assess the genetic evidence on modern
human origins.
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For several years now, the genetic literature on modern human origins has relied heavily on ge-
nealogical trees inferred from mitochondrial DNA (mtDNA). We begin our review with a discussion
of what is wrong with this approach.

The Problem with Mitochondrial Trees

Several trees inferred from world-wide samples of human mtDNA have their deepest branches within
the African population (Cann et al., 1987; Vigilant et al., 1991), and this fact has been interpreted as
support for an African origin of the modern human population. However, recent work has challenged
the estimated trees that underlie this inference (Maddison et al., 1992; Templeton, 1992; Hedges
et al., 1992; Templeton, 1993; Gibbons, 1992). It now appears that the observed pattern was an
artifact resulting from the order in which observations were entered into the computer program.

Subsequent work has shown that the human mitochondrial tree is extraordinarily difficult to
estimate. Many thousands (perhaps millions) of trees are consistent with the data, and it seems
impossible to choose among them. Although this low phylogenetic resolution is unfortunate for
those who wish to build trees, it also provides information: it suggests that the human population
has undergone a relatively recent expansion in size. To see why, consider the upper two panels of
figure 1. The upper panel shows the history of a hypothetical population, and the middle panel
shows the genealogy of a sample of 50 individuals drawn from this population. This is the true
genealogy of our hypothetical sample, not an estimate. In both of these panels, the horizontal axis
measures time backwards from the present on a “mutational” time scale in which each unit is equal
to 1/(2u) generations, where u is the mutation rate. For purposes of discussion we will assume that
u = 0.0015.! With generations of 25 years, this makes each unit of mutational time equal to 8,333
years.

The hypothetical population experienced a 500-fold expansion at 7 units of mutational time
(or 58,000 years) before the present.? This expansion has a profound effect on the genealogy.
The vertical lines in the genealogy mark points at which two lineages have a common ancestor,
and “coalesce” into a single lineage. Coalescent events are rare in the period from the expansion
to the present; most of them occur in a brief interval just prior to the expansion. This is no
accident. In a large population, a random pair of individuals is unlikely to have the same mother.
Consequently, coalescent events occur only rarely in the large post-expansion population. But
prior to the expansion the population was small, a random pair was much more likely to share the
same mother, and coalescent events therefore occur rapidly. As a result, coalescence events are
concentrated in a narrow interval of time. This pattern occurs not only in the simulated genealogy
in figure 1, but also in genealogies estimated from human mtDNA (see for example that of Di Rienzo
and Wilson (1991)). Indeed, we have never seen a world-wide human mitochondrial genealogy that
lacks this pattern.

The crosses on the genealogy in figure 1 represent mutations, which occur randomly along each
branch. In this hypothetical population, 37 of the 49 coalescent events occur prior to the expansion,
yet 143 of the 150 mutations occur after. Consequently, only 7 mutations are available for dating
the 37 clades that antedate the expansion. Clearly, no statistical method could tell us much about
the relative ages of these 37 clades: the data are essentially devoid of phylogenetic information.

!This estimate was obtained by Rogers and Harpending (1992) for the data of Cann, Stoneking, and Wilson
(1987), which we discuss further below.
2Unless noted otherwise, “population expansion” will refer to an increase in population size, rather than in range.
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Figure 1: Mitochondrial genealogy and mismatch distribution of a hypothetical population
The top panel shows 2uNpg as a function of time before present, with time measured in units of 1/(2u)
generations. The population was small prior to time 7. The middle panel shows the genealogy of a sample
of 50 individuals drawn from this population, which was generated by an algorithm that assumes selective
neutrality (Rogers, 1994b). The crosses represent mutations. The open circles in the bottom panel show
these same data as a mismatch distribution. The solid line there shows the theoretical mismatch distribution

for the parameters of the hypothetical population.
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Figure 2: The model of sudden expansion fit to the data of Cann, Stoneking and Wilson
The open circles show the relative frequencies of pairs of individuals whose mtDNA samples differ by 4 sites
in the data of Cann, Stoneking, and Wilson (1987, fig. 1). The solid line shows the fit of the non-equilibrium
distribution (Rogers and Harpending, 1992) obtained using the two-parameter method of moments estimator
(Rogers, 1994a).

Thus, the low phylogenetic resolution of human mtDNA would make sense if the human popula-
tion had undergone an expansion. This hypothesis is strengthened by the observation that estimates
of the human mtDNA tree often exhibit the pattern seen in figure 1, in which many coalescent events
are compressed into a brief interval of time (Di Rienzo and Wilson, 1991). Hasegawa et al. (1993)
infer from this pattern that an expansion of the human population occurred at 89,000 £ 69, 000
years ago. We offer additional evidence to this effect below.

It is interesting that the very pattern that obscures phylogenetic information also provides
information about population history. This suggests an uncertainty principle: It may be impossible
for data to inform us simultaneously about gene genealogy and about the history of population
size.

Waves in the Mismatch Distribution

Recent estimates of human demographic history have been based on the mitochondrial “mismatch
distribution” (or the distribution of pairwise genetic differences), an example of which is shown
by the open circles in figure 2. The mismatch distribution is obtained by counting the number
of nucleotide (or restriction) site differences between each pair of individuals, and assembling the
resulting counts into a frequency histogram or scatter plot. Human mismatch distributions are
usually smooth and wave-shaped, as shown in figure 2. Rogers and Harpending (1992) argue that
this pattern is the the signature of an ancient population expansion. The shape and position of
the wave provide information about the timing and the magnitude of the expansion (Harpending
et al., 1993; Rogers, 1994a).

To make these claims credible, we first explain why population expansions generate waves in the
mismatch distribution. To this end, we use the simulated sample in the middle panel of figure 1 to
calculate a mismatch distribution. If we assume that each mutation separating a pair of individuals
produces a detectable nucleotide site difference (the so-called model of “infinite sites” (Kimura,
1971)), then the number of site differences between a pair of individuals is obtained by counting
the crosses along the path connecting them. For example, there are four site differences between



the top-most pair of individuals in the genealogy. With 30 individuals in the sample, there are 435
pairs of individuals, and we calculate the number of differences between each pair. Assembling these
435 differences into a histogram or scatterplot produces the mismatch distribution shown in the
lower panel of figure 1. Notice that the distribution peaks just to the right of the point ¢ = 7. This
is because many pairs of individuals are separated by just over 7 units of mutational time. Thus,
the wave in the mismatch distribution peaks at a point just prior to the population expansion, and
corresponds to the part of the genealogy at which coalescent events are concentrated.

The word “wave” is appropriate here not only because the mismatch distribution is shaped
like one, but also because it moves like one. As time goes by, mutations accumulate along the
branches connecting each pair of individuals. This pushes the wave to the right at a constant rate,
traversing each unit of the horizontal axis in 1/(2u) generations (Rogers and Harpending, 1992).
Thus, the mutational time scale makes the horizontal axes of the upper two panels correspond to
the horizontal axis of the mismatch distribution.

The mismatch distribution is often analyzed using models that assume an equilibrium between
mutation and genetic drift (Tajima, 1983; Avise et al., 1988). However, mismatch distributions
from simulated equilibrium populations are very ragged, with multiple peaks, and look nothing like
the smooth curve in figure 2. Indeed, the equilibrium hypothesis can be rejected on the basis of
the observed distribution’s smoothness alone (Harpending, 1994). To reach stronger conclusions,
we must model the effect of population growth on the mismatch distribution.

For non-recombining genetic systems, such as mitochondria, simple formulae allow us to cal-
culate what we shall call the “theoretical mismatch distribution” from any assumed trajectory of
population size (Li, 1977; Rogers and Harpending, 1992). We confront a problem, however, in
applying this theory to real data. The theoretical mismatch distribution pertains to differences
between a single pair of individuals. Yet we wish to apply this theory not to single pairs, but to
empirical distributions that were calculated using many pairs. Simulations show that in equilib-
rium populations, the empirical curves look nothing like the theoretical ones. Fortunately, the fit
between is much better in populations that have expanded within the past hundred thousand years
or so. This does not justify using the theory as a basis for statistical inference, but it does make
the theory useful as a guide to intuition.

Figure 3 shows the effect of a population expansion on the theoretical mismatch distribution.
The population expansion generates a wave that moves from left to right at a constant rate of
1/(2u) per generation. If, as we assumed above, each unit of the horizontal axis corresponds to
8,333 years, then the advance of the wave in figure 3 from mutational time 0 to mutational time
15 would take about 125,000 years. Because of this slow rate of change, the mismatch distribution
is useful for studying events that happened well back into the Pleistocene.

To characterize any population trajectory completely would require estimating a parameter (the
population size) for each point in time. We must settle for less than this, since it is never possible
to estimate more than a few parameters at once. Therefore, our statistical analysis has used a
simplified representation of population history that we call the “model of sudden expansion” (Rogers
and Harpending, 1992). The name is somewhat misleading, since the model can accommodate zero
growth and negative growth as well as the positive growth that its name implies. The model
assumes that population growth (if any) was restricted to a brief episode t generations ago. Prior
to this episode, the population was at equilibrium between mutation and genetic drift. Afterwards,
the population remained constant in size. Although this model is unrealistically simple, it is
robust enough to be useful even in populations with complex demographic histories (Rogers and
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Figure 3: How a Population Expansion Affects the Theoretical Mismatch Distribution
Theoretical mismatch distributions for various values of 7, assuming that 0 increased in value from 6y = 2
to 1 = 200 at 7 units of mutational time prior to the present.

Harpending, 1992).
The model involves three parameters,

90 = 2N0u
91 = 2N1u
T = 2ut

where v is the total mutation rate over all sites in the sample, Ny is the female population size
before expansion, Nj the size after, and ¢ the time in generations since the expansion. Rogers
(1994a) has developed statistical methods that estimate these parameters. His estimates were used
to fit the solid line in figure 2, which provides an excellent description of the data. However, this
close fit is no reason for confidence in the method. Instead, the method is justified by simulations,
which show that the estimators are well behaved, with modest standard errors (Rogers, 1994a).
The estimates indicate that the human population expanded dramatically some 7/(2u) generations
ago—perhaps 60,000 years. Similar conclusions have been obtained from many other human data
sets (Sherry et al., 1993).

To generate a confidence interval, Rogers simulated 1,000 data sets at each of a wide variety of
parameter values. At each parameter value, he used the simulated data to test the hypothesis that
those parameters could have generated data “at least as extreme” as the data shown in figure 2
(this test is described in full elsewhere (Rogers, 1994a)). The set of parameter values that could
not be rejected at the 0.05 significance level constitutes a 95% confidence region, and is shown in
figure 4.

The open circles in the confidence region indicate parameter values that were rejected, and
are therefore outside the confidence region. The filled circles indicate points within the confidence
region. Since the confidence region excludes all parameter values implying that growth was 100-fold
or less, the evidence for a population expansion is clear. An expansion of this magnitude—even
one that happened quickly—is not implausible. The world human population is now growing at
about 1.5% per year, and the Yanomamo (an expanding horticultural population) are growing at
about 2% per year. Thus, a 1% rate of increase is well within human capabilities, and at this rate
a 1000-fold increase would require 700 years.
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Figure 4: A 95% Confidence Region for the CSW Data
Filled circles (o) indicate points within the 95% confidence region, and open circles (o) indicate
points outside of the confidence region. 10%-fold growth means that 61/6y = 10*. Data are from
Cann, Stoneking, and Wilson (1987). This is an expanded version of Rogers’ (1994a, figure 8)
confidence region.



7 measures the time since the expansion in units of 1/(2u) generations. The confidence region
implies that 4 < 7 < 9, with 95% confidence. If the nucleotide divergence rate is 4% per MYR
(Cann et al., 1987), then u = 1.5 x 1073 (Rogers and Harpending, 1992). With generations of 25
years, the confidence interval for 7 then corresponds to 33,000-75,000 years B.P. If the nucleotide
divergence rate is really 2% per million years (Cann et al., 1987), then v = 7.5x 10~ and the interval
for 7 becomes 66,000-150,000 B.P. Neither of these is a proper confidence interval, because neither
takes proper account of the sampling variation in our estimated divergence rates. Nonetheless,
if the true value of u is somewhere in the neighborhood of these estimates, then the population
expansion must have occurred in the late Pleistocene.?

The confidence interval also implies that 6y < 10. With the smaller estimate of u this gives
approximately Ny < 7,000, in good agreement with earlier estimates of population size (Haigh
and Maynard Smith, 1972; Brown, 1980; Jones and Rouhani, 1986; Maynard Smith, 1990; Wills,
1990; Rogers and Harpending, 1992). Thus, it appears that sometime in the late Pleistocene, the
ancestral human population contained no more than a few thousand breeding females.

How large was the post-expansion population? In the panel for 103-fold growth, 0.46416 is the
smallest value of 6y within the confidence region, so this panel implies that #; may be as small
as 10% x 0.46416 = 464. Repeating this exercise in the panels for 10%- and 10°-fold growth (the
only panels that define a lower bound for ) gives the same answer. Thus, 464 is apparently the
lower edge of the confidence region for ;. Dividing by twice the mutation rate (and using the
larger estimate of u), we find that the post-expansion must have included at least 150,000 breeding
females, or 300,000 breeding individuals.

This confidence region assumes (unrealistically) that the entire human species mates at random.
Nonetheless, it has been largely vindicated by subsequent work using a geographically structured
model (Rogers, 1994b). The structured model requires two revisions of the random-mating confi-
dence region. First, if the post-expansion population is structured, then the expansion need not
be quite as large—100-fold is enough. Second, if the pre-expansion population is structured, then
the initial population must be even smaller. Under strong migration (between 1 and 100 migrants
per generation between each pair of groups), the confidence region requires that 6y < 2.15, a value
only one fifth as large as the upper bound under random mating. Under weak migration the upper
bound is even smaller. This implies that, if the initial population was structured, then it cannot
have included more than 1,500 breeding females.

Waves in the Intermatch Distribution

In a subdivided population we can calculate mismatch distributions using pairs drawn either from
a single subdivision, or from different subdivisions. Following Harpending et al. (1993), we refer
to the latter as “intermatch distributions.” In presenting ideas about intermatch distributions, we
ignore gene flow in order to simplify the exposition. Gene flow is then introduced in the simulations
used to evaluate these ideas.

A wave in an intermatch distribution may reflect either of two types of events. First, it may
reflect an expansion that occurred prior to the separation of an ancestral population. When a
population expands and later splits into several subdivisions, the wave produced by the earlier

3Nei (1985, p. 61) estimates the rate of mitochondrial nucleotide divergence at 1.4% per million years. If this rate
is correct, then the upper bounds on all of our estimates will be slightly larger.
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Figure 5: Mismatch and Intermatch Distributions
Dashed lines are used for mismatch distributions of Asia, Nuu Chah Nulth, and Europe, dotted lines
for mismatch distributions of Middle East, !Kung, and Africa. Solid lines are used for intermatch
distributions. The right panel is based on high resolution mitochondrial restriction site data, and
the others on mitochondrial sequence data from Hypervariable Region I. Redrawn from figures 3
and 6 of Harpending et al. (1993).

expansion will continue to dominate the mismatch distribution within each subdivision, and also
the intermatch distribution between each pair of subdivisions. Thus, the intermatch and mismatch
distributions are nearly identical.

The result is very different, however, when there is no wave in the original distribution. Then,
separation of a population will produce a wave in the intermatch distribution that does not appear
in the mismatch distributions. Like the mismatch waves in figure 3, this intermatch wave will move
from left to right at a constant rate of 1/(2u) per generation. In fact, the intermatch distribution
evolves just like the mismatch distribution of an infinite population. This makes it possible to
study intermatch waves using the same methods that are used for the mismatch waves.

The three panels in figure 5 compare the mismatch and intermatch distributions of three pairs of
populations. The left panel compares the Asian and Middle Eastern populations, for which the two
mismatch distributions are nearly identical both to each other and to the intermatch distribution.
As discussed above, this pattern suggests that an expansion either preceded or coincided with the
separation of these populations. The latter possibility is consistent with Replacement Hypothesis
of modern human origins.

In the middle panel, the distributions of the !Kung and Nuu Chah Nulth show a different
pattern. There, the intermatch distribution leads the two mismatch distributions by an interval
that Harpending et al. estimate at close to 50,000 years. This pattern occurs frequently in pairs of
human populations; the mean excess of intermatch waves over mismatch waves amounts to about
30,000 years (Harpending et al., 1993). How could this pattern have arisen? Harpending et al. show
that such patterns are unlikely to arise when a population expands and subdivides at the same
time, as the Replacement Hypothesis assumes. The pattern seems consistent with two alternative
scenarios.

The first scenario assumes that, around 100,000 years ago, an initial randomly-mating popu-
lation separated into several groups that may have been completely isolated from each other, and
were at most weakly connected by gene flow. This initial separation event gave rise to the lead-



ing intermatch wave in the figure’s middle panel. Some 50,000 years later, the groups underwent
simultaneous bottlenecks or expansions in size, producing the within-population mismatch waves.
This scenario is a weakened form of the Replacement, or Garden of Eden Hypothesis, obtained by
relaxing the conventional assumption that the separation and the expansion were simultaneous.
For this reason, Harpending et al. refer to it as the Weak Garden of Eden (WGOE) Hypothesis.

The leading intermatch wave is also consistent with a second scenario, which also assumes that
the groups expand simultaneously, but does not assume any initial separation event. Instead, the
population is subdivided as far back into the past as we care to look. It is crucial that the groups be
only weakly connected by gene flow. As we look backwards from the present, weak gene flow implies
that the sample from each group may coalesce to a single lineage before any migrations occur. Then,
no additional coalescent events are possible until migration moves one of these lineages to another
group. Since gene flow is weak, this may take a long time. When a migration finally occurs, the
next coalescent event will join all the samples from one group to all the samples in another, thus
producing an intermatch wave. This intermatch wave leads the mismatch waves because of the
time that elapses before a migration occurs. Since this elapsed time is a random variable with no
bearing on any expansion, separation, or other population-level event, the leading intermatch wave
does not date any such event. It tells us only that prior to the expansions documented by the
mismatch waves, the population was subdivided, with weak gene flow between subdivisions. We
refer to this as the Divided Eden Hypothesis.

Harpending et al. performed extensive simulations showing that leading intermatch waves occur
frequently when the pre-expansion population is subdivided, and only weakly connected by gene
flow. Thus, there is good reason to believe that the major human populations separated long before
the expansions that are reflected in the within-group waves. Harpending et al. did not, however,
distinguish between the two scenarios just outlined.

In choosing between these scenarios, we rely on the confidence regions that Rogers (1994b) has
calculated under various models of population structure. When the initial population is structured,
as in the multiregional and divided Eden hypotheses, the confidence region allows an initial popu-
lation of only 1,500 breeding females. This is clearly too few to populate Europe, Africa, and Asia,
and thus refutes the Multiregional Hypothesis. Harpending et al. showed that, under the Divided
Eden Hypothesis, the intermatch wave is unlikely to lead the mismatch waves by a margin as large
as that in the data unless the subpopulations exchange fewer than 0.5 migrants per generation.
This implies a far greater level of between-group variation than has ever been seen in modern hu-
man populations of this size.* This observation is not conclusive, for the ancient population may
have had a pattern of gene flow unlike that of any modern population. Nonetheless, it provides
grounds for skepticism toward the Divided Eden Hypothesis.

This leads us toward the alternative—the WGOE hypothesis. But this hypothesis encounters a
problem too, since it also stipulates that the pre-expansion population was highly structured, and
we just argued that this seems unlikely. There would be no difficulty, however, if the “expansion”
that is dated by the confidence regions referred not to the within-group expansions of the WGOE
hypothesis, but to the earlier separation event. Under this interpretation, the “pre-expansion”
population whose size is so small is the same as the “pre-separation” population of the WGOE

4To minimize predicted between-group variance, we assume an ancient population with only two groups. The
effective migration rate is then m. ~ 2m, where m is the migration rate (Rogers and Harpending, 1986, Eqn. 8).
Substituting this into equation 1 below, with K = 2 and nm = 0.5, gives Fsr = 1/9, a value several times larger
than has been reported from any small modern human population (Rogers and Harpending, 1986).
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hypothesis.

But does this interpretation make sense? The confidence regions were obtained from a single
mismatch distribution calculated from a world-wide sample—Ilet us refer to this as the “pooled mis-
match distribution.” When a population splits into several subdivisions, its effective size increases
even if there is no increase in census size (Nei and Takahata, 1993). Therefore, the separation
event that is posited by the WGOE hypothesis would generate a wave in the pooled mismatch
distribution. The WGOE hypothesis also posits that, several tens of thousands of years later, each
subpopulation undergoes a bottleneck or episode of growth. These later events would have pro-
found effects on within-group mismatch distributions, but no effect on the intermatch distributions.
The pooled distribution is an average of K within-group mismatch distributions, and K (K —1)/2
intermatch distributions, where K is the number of groups. If K is large, then within-group dis-
tributions will have only a small effect on the pooled distribution. Consequently, the wave in
the pooled distribution should date the separation, with a downward bias that is small when the
number of groups is large.

To test this idea, we simulated data under the WGOE hypothesis. Each simulation begins with
a randomly mating population at mutation-drift equilibrium with § = 1. At 14 mutational time
units before the present, this population grows by a factor of 10 and simultaneously splits into 25
subpopulations, which exchange 0.1 migrants per generation. Things are constant for 7 mutational
time units, after which each subpopulation grows again by a factor of 50. Using this model of
population history, we simulated 1,000 pooled mismatch distributions, and used Rogers’ (1994a)
method to estimate 7 from each. The median estimate of 7 is 12.74—much closer to the separation
time of 14 than to the major episode of growth at time 7. Thus, under the WGOE hypothesis
with 25 groups, the pooled distribution provides an estimate of the separation time with a modest
downward bias.

When the number of groups is 3 rather than 25, the downward bias is much larger. But since
continental populations do not mate at random, the effective number of groups is much larger
than the number of continents, and the 3-subdivision result should not apply. Consequently, if the
WGOE hypothesis is correct, then the confidence regions provide a somewhat biased estimate of
the time of separation. The small estimates of initial population size refer to the pre-separation
population of the WGOE hypothesis.

The Selection Hypothesis

So far, we have assumed that mitochondrial evolution is selectively neutral, yet this may not be so.
Suppose that a favorable mitochondrial mutation occurred 50,000 years ago, and swept through
the population. This would produce a wave like that in figure 2. Our estimates would then refer
not to the size of the human population, but to the size of an expanding clade of superior mutants.
Our time estimate would refer to the time of this selective sweep of the new allele through the
population.

The selection hypothesis receives apparent support from two studies showing that variation in
mtDNA is inconsistent with a model of neutral evolution (Excoffier, 1990; Merriwether et al., 1991).
However, the hypothesis that they reject assumes not only that the mtDNA is neutral, but also
that the population size has always been constant. Thus, the pattern that these studies identify
may have been caused by population growth rather than selection.

We know of two ways to evaluate the selection hypothesis. First, Harpending et al. (1993,

11
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Figure 6: Eastern Chimpanzee (Pan troglodytes schweinfurthii) and Human Mismatch Distributions
The mismatch distributions of both species are based on 245 homologous nucleotides from the
mitochondrial control region. Solid lines show theoretical distributions fitted by method of moments
after constraining Fy = 0, as described by Rogers (1994a). Source of chimpanzee data: P. Morin
and H. Harpending, unpublished data. Source of human data: S. Sherry, H. Soodyall, L. Vigilant,
and M. Stoneking, unpublished data.

p. 495) point out that this hypothesis is inconsistent with patterns such as that in the middle panel
of figure 5. Once an advantageous mutation becomes fixed in the population, all mitochondria will
trace their ancestry back to the original advantageous mutant. Consequently, as an advantageous
mutation sweeps through a population, it erases any earlier mismatch and intermatch waves. Thus,
the leading intermatch wave in the middle panel of figure 5 implies that neither the 'Kung nor the
Nuu Chah Nulth waves can have been caused by an advantageous mutation.

Second, if the wave in the human data is due to an environmental catastrophe such as a
glaciation, or the Toba volcanic super-eruption that we discuss below (Rampino and Self, 1992),
then it should have affected other species in addition to our own. The mismatch distributions
of other species should show waves similar to those in the human data. Figure 6 shows that the
mismatch distributions of humans and of Eastern Chimpanzees do indeed have waves at about the
same place. Although either wave could have been produced by the advance of a favorable mutation,
it is unlikely that this would occur in both species at the same time. Thus, this evidence supports
the hypothesis that the mismatch waves reflect changes in population size rather than natural
selection. It also suggests that the waves of both species reflect some environmental catastrophe.
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Table 1: Mean persistence time of a deleterious allele
The calculations assume a population of size N, in which the relative fitness of heterozygotes is
1 — h, while that of affected homozygotes is 1 — s. The initial frequency of the deficiency allele is p,
and the expected time (in generations) during which it persists in the population is ¢y. Calculations
are based on equations 15a, 16, and 17 of Li (1972). The upper portion of the table is taken from
Xiong and Li (1991).

to

N, P h s (generations)

250 0.00400 0.000 0.05 8.6
500 0.00400  0.000 0.05 15.8
1,000 0.00400  0.000 0.05 29.0
1,000 0.00100  0.000 0.05 9.5
1,000 0.00100 -0.005 0.05 11.0
1,000 0.00100 -0.010 0.05 13.1
5,000,000 0.00100  0.000 0.05 12,146.0
500,000 0.00001 -0.002 0.10 3.3 x 10°
10,000 0.00400 -0.005 0.05 2,401.4
10,000 0.00400 -0.001 0.05 248.3
10,000 0.00400  0.000 0.05 210.0
10,000 0.00400  0.001 0.05 170.8

Arguments Against a Bottleneck

The preceding sections suggest that bottlenecks, or expansions from small size, occur in the histories
of most human populations and also in that of the human population as a whole. This conclusion
appears to contradict several publications, which argue that there has been no narrow bottleneck
in the past million years or so. Below, we argue in two cases that there is in fact no contradiction,
and in a third that the argument against an expansion is flawed.

Polymorphism at the Apolipoprotein C-II Deficiency Allele

Xiong et al. (1991) have studied a polymorphism at the apolipoprotein C-II deficiency allele, which
causes lipoprotein abnormalities that are severe in affected homozygotes, and mild in heterozygotes.
Two variants of the allele have been found, one from Japan and the other from Venezuela. The
pattern of similarities between the two variants suggest that they are descended from a common
ancestor who lived at least 500,000 years (or about 20,000 generations) ago. This seems remarkable.
The allele is, after all, deleterious. How could it have survived so long in the face of selection?

To find out, Xiong et al. calculated the expected value, tg, of the number of generations that
a deleterious allele will persist in a population. This result depends on the effective (male plus
female) population size N, on the initial allele frequency p, and on the coefficients of selection,
h and s, against heterozygotes and affected homozygotes, respectively. Their results are shown in
the upper portion of table 1. Notice that ¢y is much less than 20,000 (the observed persistence
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time) in all of the rows where N, < 1,000. On this basis, Xiong et al. reject the hypothesis that
N, < 1,000.

However, we are interested in a somewhat different hypothesis. As discussed above, analysis
of mismatch distributions indicates that the human population survived a period during which it
comprised around 5,000 females, or 10,000 individuals. We repeated the calculations of Xiong et
al. for this population size, and our results are shown in the lower portion of the table. Those
results show that even when h = 0 (no heterozygote advantage) this population size makes the
expected persistence time some 250 generations, or 6,250 years. Thus, these data cannot reject a
bottleneck in which N, = 10,000 for 6,250 years. And this statement is still too conservative, for
6,250 years is only the mean persistence time. To reject the hypothesis that N, = 10,000 for a
period of T years, we would need to show that the probability of persistence longer than T is less
than some significance level such as 0.05. The values of T' that cannot be rejected would constitute
a 95% confidence interval. We do not know the extent of this confidence interval, but it surely
includes values larger than the mean (i.e. 6,250 years). Thus, there is no contradiction between the
apolipoprotein data and the mitochondrial mismatch data.

HLA Polymorphism

A similar case against narrow bottlenecks has been made using evidence from HLA polymorphisms.
Several of these polymorphisms are shared by humans and chimpanzees, and are thus at least 4 x 10°
years old. From this evidence, Takahata (1990; 1993a; 1993b) has shown that the total (male plus
female) human population probably did not drop below 10,000 individuals for any extended period
during the Pleistocene. These results are consistent with the mitochondrial mismatch data, which
imply a female population of about 5,000.

Templeton’s Analysis of mtDNA

Alan Templeton (1993) has also studied human mitochondrial data, and reports evidence of isolation
by distance at all levels of the genealogical tree. At lower levels of the cladogram, corresponding to
the past 30,000 years, isolation by distance is to be expected under all models of modern human
origins. To refute the replacement or weak Garden of Eden hypotheses, it is necessary to show that
the pattern of isolation by distance extends back beyond (say) 100,000 B.P. While Templeton does
not provide such a date, he does report evidence for isolation by distance even at the highest levels of
his cladogram, suggesting that the pattern extends well back into the Pleistocene. We mistrust this
inference because, as explained below, we doubt that high-level clades can be accurately identified.

Templeton also reports evidence of two local geographic expansions (one in Europe and the other
in the Middle East and northern Africa), but no evidence of any global geographical expansion. This
appears to contradict the mismatch distributions, which support an expansion. Yet there is really no
contradiction. Templeton is concerned with an increase in the the population’s geographic extent,
whereas the mismatch evidence refers to an increase in the number of individuals. If the population
grew without colonizing new territory, then both inferences could be correct. This interpretation
is supported by Templeton’s subsequent work, which indicates an expansion of population size (A.
Templeton, personal communication).

Nonetheless, Templeton’s result would appear to restrict severely the hypotheses that we may
plausibly entertain about modern human origins. As Templeton emphasizes, it appears to refute
the replacement hypothesis, which requires an expansion in geographic extent as well as in numbers.
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Templeton’s result is similarly inconsistent with the Weak Garden of Eden Hypothesis, which also
traces the human species back to a single small population some 100,000 years ago. We are skeptical,
however, of Templeton’s analysis.

Templeton’s method for detecting geographic expansions is based on the premise that when
an expansion occurs, “one or more younger clades should have significantly larger geographical
distribution than some older clades” (Templeton, 1993, p. 63). The rationale for this premise is
twofold. First, when a population expands into a new area, the expanding population may not
include all of the clades present in the parent population. When this happens, the expansion will
increase the geographic extent of some clades, while leaving that of others unchanged. Second, if a
mutation occurs during a geographic expansion, the clade comprising its descendants may become
widely dispersed. For both reasons, geographical expansions may cause some younger clades to
occupy more territory than some older clades.

We grant that geographic expansions may have this effect, but are not convinced that they
always do so. For example, suppose that the size expansion in figure 1 were accompanied by a
geographic expansion. If the entire population participates in the expansion—a realistic possibility
because our initial population is small—then no older clades would be left behind. No mutations
would arise during our hypothetical expansion because its duration is so short. Consequently (and
contrary to Templeton’s expectation), no younger clades would exceed older clades in geographic
extent. Templeton’s argument fails whenever the expanding population contains all the mitochon-
drial clades of the parent population, and the expansion takes place too rapidly for new mutations
to arise. However, the expansion in figure 1 is unrealistically brief (being instantaneous). Had the
expansion lasted 1,000 years, mutations would have arisen within its duration. Thus, Templeton’s
argument may be correct. As yet, however, the case in its favor does not seem solid enough to
serve as a basis for statistical inference.

In addition, we are skeptical of the statistical method that implements this idea. To compare
the geographic extents of younger and older clades, one must first determine their ages. This
determination need not be precise, but must provide some information. Templeton obtains this
information by using genetic data to link haplotypes together as a cladogram, or unrooted tree.
Haplotypes near the tips of the cladogram are assumed to be younger on average than those in the
interior.

This procedure should work well when the coalescent events are well separated in time, but
would fail with data such as those in figure 1. As discussed above, only 7 mutations are available
for dating the 37 clades that antedate the expansion. Consequently, no statistical method could
tell us much about the ages of these clades. And such data are exactly what we should expect
when a population has expanded in size.

Templeton and Sing (1993) consider four sources of uncertainty regarding their estimated clado-
gram, and conclude that their inferences are robust with respect to all four. They do not, however,
consider the problem raised here. We conclude that Templeton’s method is unlikely to work well in
populations that have expanded rapidly in size, and are therefore skeptical of the conclusion that
no global range expansion has occurred.

Equilibria and Convergence

We are now in a position to compare the mismatch analysis with other forms of genetic evidence.
In several places, we will encounter alternative interpretations. To choose among them, we must
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calculate not only the evolutionary equilibrium value but also the rate at which this equilibrium is
approached. Before proceeding, therefore, we interrupt our review with a digression that introduces
these concepts.

If demographic parameters remain constant, each of the statistics considered below will even-
tually reach some equilibrium value at which it ceases to change. The various statistics differ in
the rates at which they converge toward their equilibria. We illustrate these ideas using a variable
that has figured prominently in discussions about modern human origins: the mean number m of
mitochondrial nucleotide site differences between pairs of individuals within a population.

The equilibrium value of m is equal to 6 = 2N,.pu, where u is the aggregate mutation rate over
the portion of the mitochondrial genome that has been sampled, and N g is the effective female
population size.® So long as N.r remains constant, m will move closer and closer to its equilibrium
f. Since 6 is proportional to population size, reductions in population size will cause reductions in
m, and vice versa. This is one of the reasons why m provides information about population history.

The other reason follows from an asymmetry in m’s rate of change. It takes N.r In 2 generations
for m to move half-way from any initial point to its equilibrium. In other words, N.rIn2 is the
half-life of the process by which m converges toward equilibrium.® When the population is small,
the half-life is short and convergence is therefore rapid. But when the population is large, the
half-life is long, and m’s convergence is therefore slow.

The significance of this asymmetry is illustrated in figure 7. The upper graph shows a hypothet-
ical time-path of female population size. Prior to the bottleneck at generation 5,000, the population
is large, and m is at its equilibrium value of 8 = 100. To make the discussion concrete, we shall
assume as before that the mutation rate is v = 0.0015. This implies that N.r = 6/(2u) = 33,333
prior to the bottleneck. Then, at generation 5,000, the population crashes to 33 females and m’s
equilibrium value becomes § = 0.1. Convergence toward this new equilibrium is rapid because
the half-life—33 x In2 =~ 23 generations—is short. The two panels on the left side of the figure
illustrate the effect of a long bottleneck, which lasts 333 generations, or 14.6 half-lives. During 14.6
half-lives, the difference between m and 6 is reduced to a fraction 0.5'4¢ = 0.00004 of the original
difference. As the figure confirms, convergence is nearly complete. The two panels on the right side
of the figure describe a brief bottleneck of only four generations, or 0.17 half-lives. During the brief
bottleneck, the difference between m and 6 is reduced to a fraction 0.5%'7 = 0.89 of the original
difference. Thus, the brief bottleneck produces only a small change in m’s value. To have a large
effect, a bottleneck must last on the order of a half-life. The half-life tells us which demographic
perturbations will be reflected in genetic statistics, and which will not.

In the figure, m’s rapid fall during the bottleneck stands in stark contrast to its very gradual
rise after the bottleneck ends. m will eventually level off at its old value, but that will take well
over a million years. Consequently, the reduction in m’s value that was produced by the bottleneck
will be evident for an exceedingly long time. This is also a consequence of m’s half-life: After the
bottleneck, the population is large and the half-life is 23,105 generations—nearly 600,000 years.
Convergence following a bottleneck is therefore much slower than convergence during a bottleneck.
Were this not the case—were it true for example that m’s rise were as rapid as its fall—m would

5More precisely, N.r is the haploid inbreeding effective number of females, defined as the reciprocal of the prob-
ability that a random pair of individuals has the same mother.

5Using the model of “infinite sites,” Li (1977, Eqn. 6) showed that m(t) = 6 + (m(0) —
m’s initial value and ¢ is time in generations. The half-life is obtained by setting [m(t) —
solving for t.

e t/Ner wwhere m(0) is

0
6]/[m(0) — 6] = 1/2 and
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Figure 7: Effect of a bottleneck on m, the mean pairwise difference
The mean pairwise difference, m, is calculated using the equation in footnote 6. In both cases, the bottleneck
population is 1/1000 as large as the original population.

be of very little use to students of demographic history. The effect of a bottleneck would quickly
disappear, and m could inform us only about the recent past.

These comments apply not only to m, but to any genetic statistic that converges geometrically
to an equilibrium. Statistics that converge too slowly will be little affected by demographic pertur-
bations, and therefore cannot tell us much about them. On the other hand, statistics that converge
too quickly cannot reach very far back into the past. For both reasons, rates of convergence will
play a central role in the sections that follow.

Mitochondrial Diversity of the Human Population

The human species is remarkably low in mitochondrial genetic diversity. At equilibrium, the di-
versity of selectively neutral genes should be low in small populations, and high in large ones.
Molecular assays confirm that human mitochondrial diversity is indeed lower than that of more nu-
merous species such as Drosophila melanogaster (Li and Sadler, 1991; Jorde et al., 1994). However,
our diversity is also lower than that of the anthropoid apes, whose populations are much smaller
(Ferris et al., 1981; Wilson et al., 1985; Kocher and Wilson, 1991). This puzzling discrepancy is
illustrated in table 2, which compares rates of nucleotide substitution in the mtDNA of humans
and chimpanzees. Here, diversity within populations is measured by a statistic that is approxi-
mately equal to the mean pairwise difference m divided by the number of nucleotide sites sampled.
Because of its close relationship to m, this statistic converges at the same rate. The data sets in
the table were chosen for comparison because they deal with essentially the same portion of the
mitochondrial genome, and use similar statistics to estimate the substitution rate.
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Table 2: Mean numbers of mitochondrial D-Loop nucleotide substitutions between pairs of indi-
viduals within and between populations

In each table, the boldfaced diagonal entries estimate the mean number of substitutions per nucleotide site
between pairs of individuals within populations. Entries below the diagonal estimate this quantity for pairs
from different populations. Entries above diagonal give between-group substitutions minus the mean of the
two corresponding within-group values (Nei, 1987, Eqn. 10.21).

Human Races
Caucasoid Mongoloid  Negroid
(N=20) (N=T71) (N=10)

Caucasoid 0.0094 0.0012 0.0028
Mongoloid 0.0128 0.0137 0.0015
Negroid 0.0194 0.0203 0.0238

Source: Horai and Hayasaka (1990)

Chimpanzee Subspecies

Pts Pt Ptv

(N=40) (N=18) (N =8)

Pts 0.029 0.030 0.137
Ptt 0.072 0.055 0.087
Ptv 0.192 0.155 0.081

Pts: Pan troglodytes schweinfurthii
Ptt: Pan troglodytes troglodytes
Ptv: Pan troglodytes verus

Source: Morin (1993)

18



The chimpanzee numbers are obviously larger than the human ones. To summarize this dif-
ference, we calculate the expected number of substitutions per site between a random pair of
individuals, each drawn with equal probability from one of the three major populations. Table 2
implies that this number is 0.11 for chimps, 0.017 for humans.” Thus, chimpanzee mitochondrial di-
versity exceeds that of humans by nearly an order of magnitude. Orangutan mitochondrial diversity
exceeds that of humans by an even larger margin (Ferris et al., 1981).

Why is the mitochondrial diversity of our species so low in spite of its relatively large population?
The answer will depend on whether gene diversity is or is not at equilibrium. At equilibrium
between mutation and genetic drift, a random pair of individuals should differ at a fraction 2N pu
of mitochondrial nucleotide sites, where N.g is the number of females and p the mutation rate
per site per generation (Nei, 1987, Eqn. 10.8). Setting this equal to the observed value 0.017 and
substituting = 4.1 x 1075 (Ward et al., 1991) gives Nz ~ 2,000. Several authors have obtained
Ner &~ 5,000 via similar calculations (Nei and Graur, 1984; Chakraborty et al., 1987; Bowcock
et al., 1991; Maynard Smith, 1990). Thus, our low genetic diversity is consistent with a long-term
human population size of only a few thousand females, or perhaps 10,000 individuals in all.

However, we have already seen that this equilibrium is approached only slowly, with a half-life
of NerIn2 generations. For a female population of 10,000, the half-life would be 6,900 generations,
or 170,000 years. A larger population is more reasonable, and implies even slower convergence.
Yet we have already seen that the mitochondrial mismatch data imply that the human population
expanded from a small beginning within the past 150,000 years. Consequently, there has not been
enough time for m to reach an equilibrium. Thus, m’s low value must reflect some historical event,
such as a bottleneck in population size, rather than a long history of moderate population size
(Haigh and Maynard Smith, 1972; Brown, 1980; Jones and Rouhani, 1986; Wills, 1990). This
hypothesis is perfectly consistent with the mitochondrial mismatch data.

Greater Mitochondrial Diversity within Africa

Thus far, estimates of mitochondrial diversity have always been larger within Africa than within
other major continental populations (Cann et al., 1987; Vigilant et al., 1989; Vigilant et al., 1991;
Bowcock et al., 1991; Horai et al., 1993; Jorde et al., 1994). Some authors infer from this that the
African population is older, and therefore the likely point of origin if the Replacement Hypothesis
is correct (Stoneking, 1993). It is not clear, however, that this pattern is statistically significant.
Although Africa is significantly more diverse in microsattelite polymorphisms (Bowcock et al., 1994,
Table 2), no study has yet demonstrated a significant excess in African mitochondrial diversity
(Templeton, 1993). We will not pursue that controversy here, however, for we believe it to be
irrelevant: Even if we knew beyond doubt that African diversity was greater, it would not follow
that Africa is the point of origin.

Why genetic diversity does not measure a population’s age

This point was recently made by Aoki and Shida (1993) on the basis of computer simulations. Their
simulations begin with an ancestral population, some members of which colonize a new area to form
a second population, which in turn gives rise to a third population. In the simulations, there was

"These results are obtained by averaging the entries on and below the table’s diagonal, with off-diagonal entries
given twice the weight of diagonal entries.
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no tendency for the ancestral population to end up with greater genetic diversity. However, the
simulations assumed that no bottlenecks in population size occurred at the time new populations
were founded. Their result may be an artifact of this possibly unrealistic assumption. Therefore,
we support their conclusion with a different argument, which begins by considering why the genetic
diversity of a population can be construed as a measure of “age”?

Diversity can be measured by the mean number m of nucleotide differences between pairs of
individuals within a population. Recall, from figure 7, that after a severe and prolonged bottleneck
m rises approximately linearly from a point near zero. For thousands of generations after this
bottleneck, m is approximately 2u times the number of generations since the bottleneck. In other
words, m measures the post-bottleneck time in units of 1/(2u) generations. This is the only sense
in which m can be construed as a measure of population age.

However, the extended bottleneck in figure 7 is remarkable both for its severity and for its
duration: the population is reduced to 33 females for a period of 333 generations or 8,333 years. If
the bottleneck were brief, such as the 4-generation bottleneck in the figure, then m would be only
modestly reduced and would therefore not measure age. m measures population age only if there
has been a prolonged, severe bottleneck.

What makes this view unpalatable is the extreme severity and duration of the bottleneck it
requires. It takes 5 half-lives to reduce m 97% of the way to its equilibrium. This requires 4,300
years with a population of 50 females, or 433 years with a population of 5. Since this seems
preposterous, we agree with Aoki and Shida that genetic diversity should not be interpreted as
a measure of population age. Nei and Ota (1991) arrive at the same conclusion via a different
argument.

What do race differences in diversity mean?

Although the greater diversity of African mtDNA may yet turn out to be a sampling artifact, let
us set this issue aside and ask what the excess would mean if it were real. We have already argued
that it should not be interpreted as a measure of the population’s age. If not age, then what? As
before, there are both equilibrium and non-equilibrium hypotheses to consider. As we have seen,
m = 2n.pu at equilibrium, where n.p represents a continental effective female population size.
Under a hypothesis of equilibrium with no gene flow, therefore, the greater African diversity would
imply that the African population has long been larger than those of Europe and Asia. Gene flow
complicates the picture: greater African diversity might also reflect greater gene flow into Africa
than into Europe and Asia. However, this is inconsistent with the large genetic distance between
African and non-African populations (see the section below on trees from nuclear DNA). Thus, the
hypothesis of equilibrium implies that the African population was larger.

We have also seen that in the absence of gene flow, the value of m within each continental
population converges to its equilibrium with a half-life of n.r In 2 generations. With gene flow, the
effective size of each continental population is larger, and convergence should be even slower. Thus,
the half-life must be at least nepIn2. The mitochondrial mismatch data imply that the global
effective population size after the expansion was at least 150,000 females, so the three continental
populations must have included at least 50,000 females each. Thus, the half-life is at least 35,000
years, and there may have been as many three half-lives since the proposed expansion.® This is long

8More precisely, equation 4 (defined below) implies that there were at least 35,000 breeding females in each race,
that the half-life was at least 24,000 years, and that there may have been four half-lives since the expansion.
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enough for m to move 7/8 of the way from its initial value to its equilibrium. Thus, it is plausible to
suppose that the African excess in mitochondrial diversity may reflect a larger population size. But
since this conclusion was reached via assumptions that made m’s half-life as small as possible, a
variety of non-equilibrium interpretations are also plausible. Greater African diversity might reflect
a less recent bottleneck, or one less severe than those suffered by other continents. It might reflect
an ancient pattern of gene flow. We see no way to choose between these alternatives.

Genetic Differences between Human Races

Magnitude

Population history is written not only in genetic differences within populations, but also in the
differences between them. Consider, for example, the upper portion of table 2, which measures the
amount by which individuals of different races differ over and above within-race differences. The
average of the three entries above the diagonal is 0.0018 for humans, and roughly 46 times this
figure for chimpanzees. Human race differences are remarkably small.

This estimate is based on mtDNA, which evolves as a single locus. We may gain more insight
by aggregating over numerous loci, using nuclear DNA. With such data, group differences are
generally measured using Wright’s (1951) Fsp, the ratio of genetic variance among groups to
the variance between random genes drawn from the population as a whole. Several studies of
nuclear polymorphisms have found that Fgp ~ 0.1 for the human races (Wright, 1978; Nei and
Roychoudhury, 1982; Bowcock et al., 1991; Bowcock et al., 1987; Jorde et al., 1994), and the same
result has also been obtained from craniometric data (Relethford and Harpending, 1994). For
mtDNA, Fgr ~ 0.3 (Stoneking et al., 1990; Merriwether et al., 1991). The difference between
these two estimates is exactly as would be predicted from the observation that, since mtDNA is
maternally inherited, its population size is 1/4 that of nuclear DNA (Takahata, 1991, pp. 593-594).

The hypothesis of migration-drift equilibrium

But what do these estimates mean? The answer depends on whether the human races have been in
place long enough to reach an equilibrium between the effects of migration and genetic drift. Let
us assume for the moment that they are at equilibrium. This assumption implies that the value of
Fsr will depend on the amount and pattern of inter-racial migration. At equilibrium,

1
1 +4nm.K/(K —1)

Fsr (1)
where n is the effective number of (male and female) individuals within each of K races and m, is
the effective migration rate (Rogers and Harpending, 1986, p. 1317). Setting this equal to 1/10 (the
observed Fgr), and assuming that three races of equal size exchange migrants at a common rate
m, we find that the number nm of migrants per generation between each pair of groups was almost
exactly 1, in agreement with Takahata (1993b, p. 18).2 Our answer differs from analogous results

9The eigenvalues of the migration matrix (except the first) equal 1—3m/2. The effective migration rate is therefore
me = [1— ((1 —-s)(1- 3m/2))2}/2, where s = 107 is the mutation rate per nuclear gene (Rogers and Harpending,

1986, Eqn. 8). Substituting these values into 1 and setting the result equal to 1/10 leads to m = (2/3)(1—+/1 — 3/n).
Multiplying by n and expanding in Taylor series gives nm ~ 1+ 3/(4n).
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Table 3: Half-life of convergence of Fgr under island-model migration

N generations years

1,000 77 1,916
10,000 768 19,203
100,000 7,534 188,347
1,000,000 63,013 1,575,329

The island model assumes equal rates of migration between the three pairs of continental popula-
tions. The half-life is calculated as —(In2)/[2In[(1 — s)(1 — 3m/2)]] (Rogers and Harpending, 1986,
p. 1322).

derived elsewhere!? because in our model the number of races is three instead of being infinite.
The answer tells us what is implied by Fg7p under the hypothesis of migration-drift equilibrium:
the racial populations must have exchanged approximately one migrant per generation. With this
level of migration, strong selection would be needed to account for the substantial race differences
that are observed in some characters (Takahata, 1993b, p. 18).

The hypothesis that we are not at equilibrium

Before evaluating the hypothesis of migration-drift equilbrium, we ask the opposite question: What
would the observed value of Fgp imply if the human races were not at equilibrium? In populations
that have been completely isolated for ¢ generations (Wright, 1969, Eqn. 13.5),

Fsp~1— et/ (2)

where n is the effective (male and female) size of each racial population. The Weak Garden of
Eden Hypothesis indicates that the human races have been separate for roughly 100,000 years,
or t &~ 4,000 generations. If so, then the estimate that Fgpr = 0.1 implies that n =~ 20,000, in
reasonable agreement with a similar calculation by Bowcock et al. (1991, p. 842). With migration, n
would have to be smaller to achieve the observed value of Fgp. Thus, if human racial differences are
not at equilibrium, then n < 20,000. This places an upper bound on the effective racial population
size under the hypothesis that the human races are not at migration-drift equilibrium. We hasten
to add, however, that this bound on racial population sizes refers to the effective population size
(Crow and Kimura, 1970), and may be much smaller than the mean population size.

Which hypothesis is more plausible?

The answer will depend both on what we believe about the origin of modern humans, and also
on the rate at which Fgp converges toward its equilibrium. The rate of convergence depends on
population size, as shown in table 3. The table assumes equal rates of migration between the three
continental populations, an unrealistic assumption that will make the half-life values smaller than
they ought to be.'! Thus, the values in the table provide minimum bounds on the true half-life.

198everal authors find that nm ~ 2 (Cavalli-Sforza, 1972; Nei and Roychoudhury, 1982, p. 18).
"For example, if migration into and out of Africa were 1/5 the rate between Europe and Asia, then the half-lives
would be 58% larger than those given in table 3.
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Using this minimum bound, the half-life of Fgp in years is roughly twice the total population
size. Since the mitochondrial mismatch data imply a total population size of at least 300,000, the
half-life of Fgr cannot be less than 600,000 years. With unequal rates of migration between the
continents, the half-life would be even larger. Either way, migration-drift equilibrium could not have
been reached in the 70,000 years since the proposed expansion. Consequently, the non-equilibrium
interpretation of Fgr should apply, and it tells us that n < 20,000, where n is the effective (male
and female) racial population size.

What does this imply about the effective size of the total human population? Assuming as above
that there are three races, one might suppose that the total effective size would be 3n < 60, 000.
However, population structure inflates the effective size. Nei and Takahata (1993) show that the
effective size is

N
T 3)
1— For

where N is the sum of the effective sizes of the subpopulations. Thus, the effective size of the total
population, including all three races, is less than 3n/(1 — Fgr) ~ 66,000. This presents a dilemma:
The premise that N, > 300,000 leads to the conclusion that N, < 66, 000!

We see only one way to resolve this contradiction: At some time after their separation, the
racial populations must have been small. During this interval, genetic race differences would have
accumulated rapidly. Then, subsequent population growth would have “frozen” these differences by
greatly reducing the rate of genetic drift. Under this hypothesis the 300,000 and 66,000 estimates
refer to different things: The estimate that N, < 66,000 refers to the effective size over the entire
period since the races separated, and including the initial period of small racial population sizes.
On the other hand, the estimate that N. > 300,000 refers only to the period since the races grew
large. This inference dovetails nicely with the Weak Garden of Eden Hypothesis, which also holds
that the racial populations separated long before their expansion. The Fgp data allow us to infer,
in addition, that the racial populations were relatively small during this interval.

N, =

Trees based on nuclear DN A

The problem of modern human origins has also been addressed using trees inferred from nuclear
DNA. With nuclear DNA, the tree that relates the individuals in a sample will differ from locus
to locus. Consequently, one cannot describe relationships among individuals with any single tree.
Instead, the aim is to infer a tree that describes relationships among whole populations.

This approach has several advantages over mitochondrial trees. First, relationships among pop-
ulations are more interesting than those among individuals. Second, the fact that each locus has
its own tree means that the more loci one studies, the better will be the estimates of parameters
describing population history. This does not happen with mtDNA because there is only one mi-
tochondrial tree, and it contains only a limited amount of information (Nei and Roychoudhury,
1993).

The most recent trees for the major human populations are those of Cavalli-Sforza et al. (1988)
and Nei and Roychoudhury (1993). In both, the deepest split separates African populations from
all others. In the tree of Nei and Rouchoudhury, the next deepest split separates Europeans
and Indians from Asians, Australians, and Amerindians. These major branches are probably not
statistical artifacts, for they are strongly supported by a bootstrap analysis. However, there are
three sources of ambiguity about what these branches mean.
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The first should by now be familiar: Genetic race differences may or may not be at migration-
drift equilibrium. If they are at equilibrium, then the deep split between African and non-African
populations would reflect a low rate of gene flow across the Sahara desert (Imaizumi et al., 1973),
while that separating Europeans and Indians from Asians would reflect a low rate of gene flow
across the Himalayas. On the other hand, if we are not at equilibrium then the trees must be
telling us about history.

We encounter a second source of ambiguity if we decide in favor of the non-equilibrium interpre-
tation. This implies that the tree tells us about history, but still leaves us in doubt about the sort
of historical events that are involved. They could either be population fissions or ancient patterns
of gene flow. We return below to this second source of ambiguity.

We can resolve the first source of ambiguity by calculating half-lives. Trees inferred from
nuclear DNA are generally based on some kind of genetic distance statistic. Some measures of
genetic distance converge at the same rate as Fgp (Harpending and Jenkins, 1973; Harpending
and Ward, 1982). The other measures are closely related, and probably converge at similar rates.
Thus, the half-lives calculated in table 3 should also apply to genetic distances. As we have
seen, mitochondrial mismatch distributions indicate that the human races separated relatively
recently, and that their populations have subsequently been large. For this reason, we favor the
non-equilibrium interpretation of genetic distance trees.

This still leaves us with two plausible interpretations: First, the trees may record the history of
population fissions. If so, the trees imply that African and non-African populations separated early
in human evolution, while Asians and Europeans separated somewhat later. This pattern is often
interpreted as evidence for an African origin of modern humans, but it seems equally consistent
with any number of other scenarios. For example, Africa could have been colonized by emigrants
from Asia, and Europe could have been colonized from the same source 10,000 years later. Our
uncertainty on this point constitutes the third source of ambiguity in the interpretation of human
population trees.

Returning to the second source of ambiguity, it is also possible that the trees reflect ancient
patterns of gene flow rather than population fissions. This view receives support from Weak Garden
of Eden Hypothesis, and also from the Fgp data that imply a period of small racial population sizes.
If the races remained small and partially isolated for tens of thousands of years after their separation,
then they could have reached migration-drift equilibrium relatively rapidly. Subsequent population
growth would have “frozen” this ancient equilibrium. If so, then trees inferred from nuclear DNA
may reflect patterns of gene flow prior to the expansion.

The Age of “Eve,” Our Common Mitochondrial Ancestor

Finally, we turn to the form of evidence that has received most attention in the popular press. Our
common mitochondrial ancestor is whimsically referred to as “Eve,” and much of the literature on
modern human origins revolves around estimates of her age. Several studies have estimated that
she lived within the past 250,000 years (Cann et al., 1987; Vigilant et al., 1989; Hasegawa and
Horai, 1991; Vigilant et al., 1991; Denaro et al., 1981; Excoffier and Langaney, 1989; Hasegawa
and Horai, 1991). This result has been offered as evidence against the Multiregional Hypothesis
(Stoneking, 1993). Although this estimate has been challenged on statistical grounds (Nei, 1992;
Templeton, 1993), it is supported by more recent work using new data and improved methods
(Hasegawa et al., 1993; Tamura and Nei, 1993; Ruvulo et al., 1993). We shall therefore tentatively
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accept this estimate of Eve’s age, and ask what it implies. It is often argued that if Eve lived within
the past 250,000 years, then the Multiregional Hypothesis must be false (Stoneking, 1993; Tamura
and Nei, 1993). Let us examine this proposition.

The age of the common ancestor of all the lineages in a population is called its “coalescence
time.” In a randomly mating population, the coalescence time for mitochondrial lineages is a
random variable whose mean is 2N p generations (Nei, 1987, p. 395), where N is the effective
number of females in the population.'? As discussed above, various authors have estimated that
Nep =~ 5,000. Thus, the mean time to coalescence in a randomly mating population should be
10,000 generations or perhaps 250,000 years.

The human population, however, does not mate at random. The Multiregional Hypothesis
holds that it has long been separated into several subdivisions, which exchange genes via migration.
Remarkably, subdivision and gene flow have no effect on the calculations of the preceding paragraph.
The relationship of a population’s effective size to its mean coalescence time remains unchanged
(Nei and Takahata, 1993). Population structure affects the calculations only through its effect on
effective population size.

In a structured population, the total effective size is related to the sum of effective subpopulation
sizes as shown in equation 3 above. For mitochondrial DNA, this equation can be expressed as

Np = Nep(1 — Fsr) (4)

where N is the sum of the effective numbers of females within subpopulations. For mitochondrial
DNA, Fsr ~ 0.3 for the major human races (Stoneking et al., 1990; Merriwether et al., 1991),
and we have already seen that N.p ~ 5,000. Thus, the Multiregional Hypothesis implies a world
population of Nrp ~ 3,500 breeding females. This agrees with the mismatch analysis, which also
showed that if the initial population was structured, then it must been even smaller (Rogers, 1994b).

It is difficult to imagine that a population this small could have populated all of Europe,
Africa, and Asia. If we claim that 10 times this number are required, then the mean coalescence
time becomes 2.5 million years, a number that would be difficult to reconcile with the postulated
convergence time of 250,000 years. Thus, mitochondrial Eve is relevant to arguments about modern
human origins, but in a manner somewhat different than is usually supposed. It is not that the
Multiregional Hypothesis requires that Eve live prior to 800,000 years ago, when Homo erectus
populations spread out of Africa. Instead, knowledge that Eve lived recently would imply that the
human population was small—too small to have populated three continents.

Discussion

Our review of genetic evidence has led to the following conclusions about human population history:

1. Between 33,000 and 150,000 years ago, the human population expanded by more than 100-fold
from an initial size of less than 7,000 breeding females if the population was homogeneous,
or 1,500 if it was structured. The small initial size accounts for the low genetic diversity of
our species, for the relatively recent age of our common mitochondrial ancestor, for the low
phylogenetic resolution of mitochondrial data, and for the waves evident in mitochondrial
mismatch distributions from most human populations.

12The effective number of females is the reciprocal of the probability that two individuals have the same mother.
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2. Although this initial population was small, it cannot have been too small. Genetic evidence
indicates that that the human population never fell to 1,000 individuals during the Pleistocene.

3. Many human populations separated several tens of thousands of years prior to the expansion
that is recorded in their mismatch distributions.

4. These populations were small at some time after their separation, and before the expansion
documented in the mismatch distributions. These regional bottlenecks could have been brief
but severe, or extended but mild.

Let us now consider what these inferences imply about the origin of modern humans.

The Multiregional Hypothesis of modern human origins holds that humans expanded through-
out the world some 800,000 years ago, and have remained united by gene flow ever since. This
hypothesis is inconsistent with conclusion 1. It seems impossible that 1,500 females spread across
three continents could have remained strongly connected by gene flow.

The Replacement Hypothesis holds that modern humans originated in Africa between 50,000
and 100,000 years ago, and spread rapidly throughout the world replacing earlier peoples. This im-
plies that the expansion of the modern human population occurred along with the initial separation
of the races, and is thus inconsistent with conclusion 3. Consequently, neither the Replacement
Hypothesis nor the Multiregional Hypothesis is consistent with the genetic evidence.

The Weak Garden of Eden Hypothesis holds that the racial populations separated some 100,000
years ago, and underwent an episode of growth some 30,000 years later. It is consistent with
all the evidence reviewed here, and accounts nicely for the apparent contradiction between the
mismatch data (which imply that N, > 300,000 after the expansion), and Fgp (which implies that
N, < 66,000). The larger number refers to the population size after the separate racial expansions,
while the smaller one reflects the small, earlier racial populations.

But is it plausible to suppose that several widely separated populations experienced roughly
simultaneous bottlenecks? This inference is surprising, but not so surprising as to strain credulity.
The simultaneous expansions (or bottlenecks) could have been caused by a cultural innovation that
swept across the entire species, by a change in climate, or by the Toba volcanic super-eruption,
which apparently disrupted the climate for several years at 73,500 B.P. (Rampino and Self, 1992).
In the latter two cases, the disruption should have affected other species in addition to our own.
This hypothesis receives support from the chimpanzee and human mismatch distributions in figure 6
(discussed above), which have waves in approximately the same place.

We conclude that all available genetic evidence is consistent with the proposition that the major
human populations separated from a small initial population roughly 100,000 years ago, and that
most of these separate populations experienced a bottleneck, or an episode of growth, several tens
of thousands of years later.
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