
Chapter 12

Resources and Population
Dynamics

Alan R. Rogers
Department of Anthropology
102 Stewart Hall
University of Utah
Salt Lake City, UT 84112

Published 1992. Pp. 375–402 of Evolutionary Ecology and Human Behavior,
Eric Smith and Bruce Winterhalder, eds. Aldine de Gruyter.

1



12.1 Introduction

Population ecology is concerned with the growth (and decline) of populations
of plants and animals, including humans. This interest, of course, is also
shared by demography, economics, and several other disciplines. Population
ecology differs in its emphasis on ecology and evolution—the ecological in-
teractions among individuals and among species, and the evolutionary forces
that shape these interactions.

Earlier chapters in this volume discuss how natural selection shapes the
characteristics of individuals: their use of resources, their distribution across
the landscape, their life histories, and so forth. This chapter is concerned with
the effects that these characteristics have on the dynamics and stability of
populations. It will show that these effects are profound, and have important
practical consequences.

This chapter begins by introducing the fundamental principles of popu-
lation growth: the exponential increase of unregulated populations, various
mechanisms that regulate population growth, and a method called “cob-
webbing” that is useful for understanding the consequences of population
regulation. As we shall see, these consequences may include not only the
stability that the term “regulation” seems to imply, but also various forms
of instability. Next, we shall take a closer look at the effects of dwindling re-
sources, using the models of “scramble” and “contest” competition. Finally,
we turn to the effect of resources on the reproduction of individuals, with
particular attention to the case in which wealth can be inherited by offspring.

12.2 Dependence of Population Growth On

Population Density

In 1990, there were roughly 5.292 billion people in the world, and this number
was expected to increase to 6.251 billion by the year 2000 (Brown 1990). At
this rate, the population would double every 42 years. Should this rate of
growth continue for 420 years, the world population would double ten times
and there would be over a thousand humans for each human alive today—
over 5 trillion in all. It seems unlikely that this can happen. As a population
increases in size, its rate of growth must eventually slow.

In the literature of population ecology, anything that limits the growth of
a population is called a “mechanism of population regulation.” These mech-
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Figure 12.1: Fertility and population size
Data refer to the US during the 20th century. Population size has been “expo-
nentially detrended.” In other words, an exponential curve was fit to the original
data, and the graph shows the deviations from this curve. After Lee (1987).

anisms fall into two important categories. Density independent mechanisms
are those whose frequency and severity are unaffected by population density.
This category would include, for example, natural disasters such as blizzards
and earthquakes, but would not include hunger or infectious diseases that
are transmitted more easily in dense than in sparse populations. Mecha-
nisms that are affected by population density are called density dependent.

Nearly 200 years ago, Thomas Malthus (1798) argued that density-
dependent mechanisms have a profound effect on human affairs. It seemed
inconceivable to him that food production could increase rapidly enough to
match the growth of an unconstrained population, and he concluded that
population growth must ultimately be limited by starvation and disease.
This view has been extremely influential, and tempts us to view the history
of human population growth as a series of responses to technological innova-
tions. For example, archeological evidence (Klein 1989) shows that new kinds
of stone tools appeared and spread out from an African origin some 40,000
years ago, and genetic evidence (Rogers and Harpending 1992) suggests that
a dramatic burst of population growth occurred at roughly the same time.
Archeological data suggest that another burst of population growth followed
the origin of agriculture some 6000 years ago. More recently, the industrial
revolution in Europe allowed another spurt of population growth that still
continues.
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One influential point of view holds that the human population is usually
regulated at a level, called the carrying capacity, that is determined by the
availability of resources. The carrying capacity is determined not only by
the environment, but also by our ability to extract resources from it. The
major episodes of population growth may have resulted when technological
innovations increased the carrying capacity.

This point of view has been criticized by authors who point out that the
rate at which innovations are adopted or invented is itself density dependent.
Population growth leads to gradually increasing scarcity, which encourages
efforts to invent or adopt new technologies. This effect has been documented
both in rural (Boserup 1965, Boserup 1981) and industrial economies (Si-
mon 1977). Even in foraging societies, technological complexity increases
with the number of people per unit of environmental productivity (Keeley
1988). Thus, it may be more useful to view innovation as an effect, rather
than a cause, of population growth. If so, perhaps humankind has not been
faced with the chronic shortages that Malthus envisioned; perhaps density-
dependent population regulation has played no important role.

This last point of view is also influential, but is probably incorrect. That
rates of innovation respond to density seems clear, but it does not follow that
the rate of population growth is unaffected by density. Consider figure 12.1,
which displays Lee’s (1987) data on fertility and population size in the 20th
century United States. Fertility is high when population size is relatively
low (i.e. below the long-term trend), and vice versa. These data suggest
that some mechanism of density-dependent population regulation is at work,
even during a period of uninterrupted population growth. Analogous density-
dependent effects on mortality are reported by Wood and Smouse (1982) in
a study of a very different population: the Gainj, a horticultural people in
Papua New Guinea. Density-dependent effects are weak, and may be masked
by larger density independent effects. Over the long run, however, a weak
effect with a persistent direction may overwhelm stronger effects with no
persistent direction (Lee 1987). Thus, even weak density dependence may
be important. Let us consider, therefore, how it affects the dynamics of
population growth.

This is a subject to which unaided intuition is a poor guide. It is tempting
to assume that density-dependent regulation will produce a time path like
the logistic growth curve in figure 12.2. The population in that figure grows
steadily until it reaches a limit determined by available resources, and then
remains constant in size. Unfortunately, this is not necessarily so. Other,
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Figure 12.2: Geometric and logistic population growth.
Geometric growth results when age-specific rates of birth and death are constant.

Logistic growth is one of many patterns that may arise when these rates are density

dependent.

less pleasant, effects are also possible, and it behooves us all to be aware of
them. The best way to develop intuition about population dynamics is to
study simple mathematical models. Let us consider, then, the dynamics of
simple models of population growth.

12.3 The Dynamics of Simple Populations

A population can change in size in only four ways: by birth, by death, by
immigration, and by emigration. In this chapter, I deal only with the first two
of these in order to keep things simple. This still leaves plenty of complexity,
since rates of birth and death can vary in complex ways. Before plunging
into these complexities, it will be useful to consider first the case in which
these so called vital rates do not change.

12.3.1 Geometric (or exponential) growth

Even when vital rates do not change, the situation is far from simple. Since
death rates are higher for the elderly, more deaths per capita will occur in
a population with many elderly people than in a young population. By the
same token, since fertility is highest for young adults, the number of births
per capita will be high if there are lots of young adults. Thus, age-specific
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birth and death rates alone cannot tell us how fast a population will grow. We
also need to know the age structure of the population, that is, the number of
individuals in each age category. And as if this were not bad enough, there is
also the matter of sex. A population with no females cannot grow, regardless
of its age structure. Furthermore, vital rates often vary among social classes.
When vital rates vary according to categories of any type—age, sex, social
class, geographic region, or whatever—the population is said to be structured.
In such a population we cannot predict how a population will grow until we
know how many people are in each category.

Confronted by these complications, we can proceed either by building a
complicated model to deal with them, or by sweeping them under the rug and
pretending that they don’t exist. This latter approach sounds irresponsible,
but it is the best way to start. A realistic model will not help much if it is
too complex for its workings to be understood. We proceed by looking first
at models so simple that they are easy to understand. Then, one at a time,
we add complications.

The simplest case is that of an organism without sex that lives a single
season, reproduces and then dies. Suppose that each individual produces
R offspring. If there is one individual to begin with, there will be R after
1 generation, R2 after 2 generations, R3 after 3 generations, and Rt after t
generations. If there are Nt individuals in generation t, there will be

Nt+1 = RNt (12.1)

in generation t + 1. This pattern of growth, in which the population size
increases by a constant multiple each generation, is called geometric or ex-

ponential growth, and the time path of a population growing in this way is
shown in figure 12.2.

In this simple case it is easy to see why growth is geometric. The re-
markable thing about this result is that it usually holds even when you add
the complications of age and sex structure back in, still assuming vital rates
to be constant in time. Thus, the simple unrealistic model tells most of the
story. This suggests that it will still be worthwhile to ignore age structure
and sex as we explore the effect of relaxing our other assumption: that vital
rates do not vary.
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Figure 12.3: Monotonic convergence toward an equilibrium
This figure illustrates a trick called “cobwebbing” for studying population dy-
namics. The solid line on the left plots the size of a population in generation
t + 1 against its size in generation t. The dotted line shows the points at which
Nt+1 = Nt. The time path of the population, beginning at point N0, is derived
by reflecting the dashed line back and forth as shown. This time path is graphed
against t on the right.

12.3.2 Population regulation

It is not hard to see that the pattern of geometric growth shown in fig-
ure 12.2 cannot continue forever. Mechanisms of population regulation alter
this pattern by adjusting rates of birth or death. Therefore, let us drop the
assumption that the vital rates do not change, and assume instead that they
vary as a function of N , the population size. To indicate this, I write the
number of offspring per parent as R(N), thus emphasizing its dependence on
N . Now the equation for population change becomes

Nt+1 = R(Nt)Nt. (12.2)

In equation (12.2) the rate of growth depends on the size, or density of the
population: it is density dependent. The supposition is that when Nt is large
enough, R will be less than 1, so the population will decrease in size. When
the population is small, R will be greater than 1 and the population will
grow. At some intermediate equilibrium value N̂ , population size will tend
to remain the same because R = 1.

Graphs such as the “cobweb diagram” in figure 12.3 are useful for thinking
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about density-dependent population growth. The solid line is a plot of Nt+1

against Nt for some hypothetical population. The dotted line connects the
points at which Nt+1 = Nt. To the left of N̂ , the solid line lies above the
dotted line, which means that Nt+1 > Nt, that R(N) > 1, and that the
population is growing. The reverse is true to the right of N̂ , which means
that large populations will shrink. The curve in figure 12.3 does not (so far
as I know) describe any real population; it is purely hypothetical. Analysis
of hypothetical models cannot tell us what nature is really like, but can
illustrate the range of behaviors that are possible. Let us consider, therefore,
what figure 12.3 implies about the dynamics of growth in this hypothetical
population.

12.3.3 Cobwebbing and dynamic stability

Given a graph like the left side of figure 12.3, it is natural to wonder what the
time path of the population will be like. This is easy to figure out using a trick
called “cobwebbing.” Suppose that N0, the population size in generation 0,
is known. The size in the next generation generation, N1, can be read off the
vertical axis of the graph. In order to get N2 we need to transfer the value
of N1 from the vertical axis to the horizontal axis. You could do this with
a ruler and a pencil, but there is an easier way. Notice that the horizontal
dashed line level with N1 on the vertical axis strikes the diagonal line directly
above N1 on the horizontal axis. Thus, we can work out the time path of
population size as shown by the dashed line in figure 12.3. Going straight
up from N0 to the solid line gives us N1. Then “reflecting” a horizontal line
from this point off the diagonal gives us N2, and so forth.

Let us now use cobwebbing to investigate several kinds of dynamical be-
havior, which are illustrated in figures 12.3–12.5. The time paths generated
are shown on the right in each figure. Try starting the population at differ-
ent values on both sides of N̂ in figures 12.3–12.5. Equilibria such as those
in figures 12.3 and 12.4 (or the logistic curve in figure 12.2) are said to be
stable, since populations away from the equilibrium tend to move closer to
it. Equilibria such as that in figure 12.5 are called unstable since populations
near them tend to move farther and farther away. Among stable equilibria
there are two possibilities. The first of these, illustrated by figure 12.3, is
called monotone convergence, and is the sort of thing that comes immedi-
ately to mind when we talk about population size being regulated. A small
population will increase gradually toward its equilibrium value, while a large
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Figure 12.4: Damped oscillations
The solid line in the cobweb diagram crosses the dotted line with a steeper slope

in this figure than in figure 12.3, producing damped oscillations.

population will decrease gradually. The other possibility is that a stable equi-
librium may exhibit damped oscillations, as illustrated in figure 12.4. There
the population always overshoots the equilibrium so that its time path os-
cillates back and forth about the equilibrium. Each overshoot, however, is
smaller than the last so the oscillations get smaller and smaller. Finally, the
unstable equilibrium in figure 12.5 exhibits what is called diverging oscilla-

tions. These oscillations get larger and larger rather than dwindling away.
Actually, the oscillations in figure 12.5 do not continue to diverge indefi-
nitely. They increase only until they reach a certain amplitude, which is
then maintained. This is called a stable limit cycle.

These cases illustrated in figures 12.3–12.5 are by no means an exhaus-
tive list of the kinds of dynamical behavior that can arise. Some models,
for example, give rise to a phenomenon called “chaos” in which population
size fluctuates but does not follow any cyclical pattern (May 1981). None
of these models is complex enough to be an accurate description of any real
population. The same sorts of instability, however, often arise in more com-
plex and realistic models (Winterhalder et al. 1988). The lesson here is
that population regulation need not lead to a stable, equilibrium population
size. It can do so, but it can also lead to oscillations. Natural populations
often fluctuate in size, and the principles that generate instability the simple
models may contribute to this instability.
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Figure 12.5: Diverging oscillations
The slope is even steeper here than in figure 12.4, and produces diverging oscilla-

tions in the neighborhood of the unstable equilibrium, N̂ . The oscillations increase

in magnitude until a stable limit cycle is reached.

The next section will consider a variety of mechanisms that tend to “reg-
ulate” populations in that they tend to increase the size of small populations,
and to decrease the size of large ones. The hypothetical graphs we have just
considered show that even populations that are regulated may differ greatly
in the stability of their equilibria. Unstable dynamics such as those in fig-
ure 12.5 might well drive a population to extinction. The equilibrium in
figure 12.4 are somewhat more stable, but the violent swings in population
size exhibited there would probably also increase the likelihood of extinction.
The most stable equilibrium is that in figure 12.3, and it is only equlibria
such as these that are likely to have the favorable results that are suggested
by the phrase “population regulation.” Thus, as we consider mechanisms
of density-dependent population regulation, it will be important to ask how
they affect the stability of equilibria.

12.4 Competition for Limited Resources

All organisms need food, and some need special dens or nesting sites in order
to reproduce or to survive the winter. Populations that grow large enough
to deplete the supply of such resources are said to be resource limited. In
such populations, an individual’s ability to survive or reproduce may depend
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on its success in competition with others for scarce resources. The larger
a population grows, the more likely it is to deplete its resources. The hu-
man population has recently enjoyed several generations of uninterrupted
growth, but there are indications that this trend is about end. While the
world population has continued to grow, the growth in agricultural produc-
tion has slowed because of “environmental degradation, a worldwide scarcity
of cropland and irrigation water, and a diminishing response to the use of
additional chemical fertilizer” (Brown and Young 1990). The result, shown
in figure 12.6, is that per capita food production has begun to drop, and
is projected to drop further. The world population may be approaching its
carrying capacity. As food becomes increasingly scarce, competition for it
will surely intensify.

Competition for limited resources is clearly a mechanism of density-
dependent population regulation since it tends to decrease the size of large
populations, but allows small populations to grow. Yet as we have already
seen, this is no guarantee that the dynamics of population growth will be
stable. Will the world human population converge gradually toward its
carrying capacity like the hypothetical population in figure 12.3, or is it
about to enter into a series of oscillations like those illustrated in figures 12.4
or 12.5? We cannot know, but some insight can be gained by considering
how competition affects stability in simple models.

In order to predict how a change in the supply of resources would affect the
growth of some population, we would need to know (1) how it would affect the
way resources are distributed among individuals, and (2) how resources affect
individual survival and reproductive success. The second of these factors
can be described by the fitness function, w(x), whose value is the expected
number of offspring born to individuals with x units of resource. For the sake
of brevity, I will hereafter refer to x as “wealth,” with the understanding that
this term will apply to a squirrel’s supply of acorns as well as to money that
one of us might have in the bank.

At the outset, let us make a simplistic assumption about the second of
these factors in order to concentrate on the first: let us assume that w(x)
is a “step function,” as shown in figure 12.7. The vertical axis, w(x), is the
average number of offspring per individual of wealth x, and the horizontal
axis is wealth. The graph illustrates the assumption that individuals whose
wealth is below a threshold value, x0, have zero fitness, whereas the wealthier
have fitness m. In real populations, fitness may often increase with wealth
(more on this later), but it would be surprising to find a threshold as abrupt
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Figure 12.6: World per capita grain production
(After Brown and Young 1990:76)

as the one in figure 12.7. Thus, our assumption is only a caricature of reality.
Nonetheless, it will illuminate effects that are only dimly perceived in more
realistic models.

12.4.1 The distribution of resources among individuals

The distribution of resources among individuals is affected both by the nature
and spatial distribution of the foods that are eaten, and by social and foraging
behaviors. Some behavior patterns tend to concentrate resources in the hands

0

m

w(x)

x0

x

Figure 12.7: A step function.
The simplest assumption about the fitness function, w(x), is that fitness is nil if

wealth (x) is less than a threshold value, x0, and is equal to a constant value, m,

if x exceeds this threshold.
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of a few successful individuals, while others tend to distribute resources more
evenly. For example, where rich, dependable patches of resource can be
found, a system of behavior called territoriality (discussed further in chapter
8 of this volume) is common. Powerful individuals gain exclusive access to
rich patches, or “territories,” by defending them against all comers. Those
who acquire rich territories are well provided for; the others may starve,
freeze, or be eaten by predators. Social dominance has a similar effect, if
subordinate individuals are unable to feed until the dominant individuals are
satisfied.

At the other end of the spectrum are populations in which resources are
relatively evenly distributed among individuals. This may occur, for example,
if resource patches are not rich enough or lasting enough to be worth defend-
ing, and foraging is done by individuals rather than groups. These differing
patterns of behavior have profoundly different consequences for population
dynamics. This can be seen most easily in two extreme cases: scramble com-

petition, in which resources are divided evenly, and contest competition in
which they are monopolized by a few individuals.

Scramble competition

Scramble competition will here refer to the hypothetical extreme case in
which resources are divided perfectly evenly. (This usage of the term “scram-
ble competition” follows that of Begon and Mortimer (1986), and differs from
that of Nicholson (1954) and  Lomnicki (1988).) The idea of an even distri-
bution of resources sounds nice, but its effect on population dynamics can
be decidedly unpleasant. To demonstrate this, we make use of the cobweb
method described above.

The cobweb method requires a graph relating Nt+1 to Nt, and this re-
quirement impels us to ask how scramble competition affects the reproduc-
tive success of individuals. Suppose that each generation is allotted c units of
resource. Since wealth is divided evenly, each individual in generation t will
have wealth c/Nt. We can read the consequences of this off of figure 12.7. If
individual wealth (c/Nt) exceeds x0, then each individual will produce m off-
spring, so Nt+1 = mNt. This occurs when Nt < c/x0. When the population
is larger than this, no offspring are produced at all, and Nt+1 = 0.

The critical population size, K = c/x0, is the carrying capacity of the
environment. In figure 12.8, the cobweb method is used to demonstrate the
catastrophic consequences of pure scramble competition. The population
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Figure 12.8: Scramble and contest
Under scramble competition, Nt+1 = mNt if mNt ≤ c/x0, and otherwise Nt+1 = 0.

Under contest competition, Nt+1 = mNt if Nt ≤ K, and otherwise Nt+1 = mK.

In both plots, m = 1.5.

grows until it exhausts the supply of resources (i.e. until Nt > K), and then
“crashes,” and goes extinct. If some small fraction of the population is able
to survive the crash, the population will grow again until it reaches carrying
capacity, and will then crash again.

The term “carrying capacity” is used in the literature in two different
ways (Dewar 1984). One usage takes carrying capacity to be the maximum
number of individuals that can survive if resources are divided evenly. The
other takes it to be the equilibrium population size. In either case, we may
expect the carrying capacity to vary, and these variations generate interesting
kinds of instability (May 1974, Harpending and Bertram 1975). This chapter,
however, deals only with the simple case in which carrying capacity (in either
sense) is constant.

The model of scramble competition shows that the two definitions of
carrying capacity are not equivalent. In our model, K is the carrying capacity
since all the individuals in a population that size (but no larger) would be
able to survive and reproduce. On the other hand, K is not an equilibrium
because the mK children of such a population would all perish. Thus, the
carrying capacity is not necessarily an equilibrium. A catastrophic fate may
await any population that—like the human population of planet earth—is
approaching carrying capacity. The extreme case of scramble competition
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gives us the worst case imaginable. What of the other extreme?

Contest competition

The other extreme is “contest competition.” In this case everyone gets an
equal share if Nt ≤ K, but not if Nt > K, for the available resources are
then divided evenly among only K individuals, and the rest get nothing.
The consequences of this form of social inequality can be derived using the
cobweb method, as before.

For concreteness, let us consider a system of territoriality in which there
are K territories, each rich enough to enable one individual to breed. This
implies that each territory contains at least x0 units of resource, and that
each territory holder will produce m offspring. If there are no more than K
adults, each will acquire a territory and produce m children. If fewer than
K children are thus produced, each child will acquire a territory and survive.
Thus, Nt+1 = mNt provided that mNt ≤ K. If there are more adults than
this, more children will be produced, but only K of them will find territories,
and the rest will perish. Thus, Nt+1 = K if mNt > K. The cobweb dia-
gram representing this case is shown in figure 12.8, and demonstrates that
contest competition produces stable population dynamics. The population
will increase monotonically to its equilibrium value, K, and then stay there.
In contrast to the case of scramble competition, the carrying capacity is an
equilibrium under contest competition.

This is good news, because the human population approximates the case
of contest competition a good deal more closely than that of scramble com-
petition. Not only do individual humans own property of various sorts, and
defend it against one another, they maintain police forces that aid them in
these efforts. In addition, vast resources are also controlled and defended col-
lectively, by corporations and by nations. Even when resources are shared,
larger shares often go to individuals of high status (Betzig 1988). Conse-
quently, resources are not divided evenly among nations, or among individu-
als within them. As resources become scarce, poor nations (and individuals)
will suffer more than rich nations (and individuals). This inequality causes a
great deal of suffering that, in my opinion, justifies the prevailing view that
inequality is a social evil. All the same, its beneficial effects on population
dynamics should not be overlooked.
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The distribution of individuals across the landscape

Ordinarily, individuals that are far apart do not compete. The intensity of
competition depends less on the number of other individuals in the species as
a whole than on the number of near neighbors. If individuals are distributed
evenly in space, the number of neighbors will be smaller than if individuals
are clumped together. For example, Lewontin and Levins (1989) point out
that although there are about 60 humans per square mile in the United States
as a whole, the average US citizen shares his or her square mile with 3105
neighbors. This is because the US population is “clumped” into cities and
towns whose population density is quite high.

These observations suggest that any behavior that, like those discussed
by Cashdan (chapter 8), affects the way in which individuals are distributed
in space, will also affect the stability of population dynamics. In simple
mathematical models, clumping reduces stability (Hassell and May 1985).
However, this effect is most pronounced in populations that are capable of
extremely rapid growth. The effect of clumping on human population dy-
namics may be small because of the limitation on growth rate that is imposed
by our comparatively low reproductive capacity.

12.4.2 Relaxing assumptions

The analysis above of scramble and contest competition produced rather
unpleasant results, which should not be accepted uncritically. Perhaps they
are due to some unrealistic feature of the models. To find out, we must add
realism to the models.

We have relied on simplistic assumptions both about the shape of the
fitness function and also about the way in which resources are divided among
individuals. To add realism, let us drop the restrictive assumption that w
is a step function, and assume only that it is a non-decreasing function of
wealth—that wealthier people produce at least as many children, on average,
as those who are less wealthy. This seems plausible, and is not a controversial
assumption in animal ecology. It is not at all clear, however, that this pattern
holds among humans. This controversy is discussed below, but let us ignore
it for the moment.

I have also made extremely simple assumptions about the distribution of
wealth among individuals. I now assume instead that wealth is distributed
among individuals in some arbitrary fashion. I shall not specify whether
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Figure 12.9: The meaning of dR/d log N |N=N̂

The solid line graphs R as a function of log N for some hypothetical population.

The equilibrium, N = N̂ , occurs at the point where R = 1, as shown by the dotted

lines. Line AC is drawn tangent to R at this point, so that the slope of AC is

equal to that of R at the equilibrium point. This slope is equal in magnitude to the

ratio of lengths of line segments AB and BC, and is negative because R decreases

as log N increases. Thus, dR/d log N |
N=N̂

= −AB/BC.

wealth is distributed evenly or unevenly, or whether poor individuals are
common or rare. I shall say only that there is some arbitrary function, fN(x),
that measures the relative frequency of individuals of wealth x in a population
of size N . To be precise, if dx is some very small value, then fN(x)dx is the
number of individuals whose wealth lies between x and x + dx. (In the
language of probability theory, I am saying that fN(x) is the probability

density of individuals with wealth x.) In this notation, the function R can
be written as

R(N) =
∫

∞

0
w(x)fN(x)dx, (12.3)

which is merely a formal way of saying that R is the average reproductive
success of the individuals in the population.

In this more general context, the method of cobwebbing breaks down, for
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Table 12.1: Criteria for local stability of an equilibrium at N̂ .
The quantity dR

d log N
|
N=N̂

is the derivative (or slope) of R as a function of log N ,

evaluated at the equilibrium point, where N = N̂ (see figure 12.9).

dR
d log N

|N=N̂ Behavior near N̂

> 0 Monotone divergence (Unstable)
–1 to 0 Monotone convergence (Stable)
–2 to –1 Damped oscillations (Less stable)
< −2 Diverging oscillations (Unstable)

in order to construct the necessary graph, we would first need to specify the
functions w and fN , thereby losing the generality we seek to introduce. To
evaluate the stability of equation 12.2 in general, we must abandon graphical
analysis in favor of mathematics. The price that is paid for this generality
(apart from the need for mathematics) is an enormous loss of detail. The
mathematical analysis will tell us only about the behavior of populations
that are already very near the equilibrium. An equilibrium is said to be
locally stable if a population very near to it tends to get closer, and locally
unstable if such populations tend to move away. The mathematics will not
tell us what happens to populations that are far from the equilibrium, nor
will they allow us to reconstruct the time path of population growth.

Mathematical analysis of local stability rests on a well known relationship
(Maynard Smith 1968: 22) between the local stability of an equilibrium
at N̂ , and the derivative dR/d log N |N=N̂ . As explained in the legend of
figure 12.9, this derivative tells how the rate of reproduction (R) changes
when the population is perturbed a little ways away from its equilibrium.
Table 12.1 says that an equilibrium is stable provided that a small increase
in population size reduces the rate of reproduction, but not by too much.

To use these results, we must evaluate the derivative, dR/d log N , which
depends both on the fitness function, w, and on the way in which the fre-
quency distribution of wealth changes as the population grows. Let us re-
examine the two forms of competition discussed above in this more general
context.
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Generalized scramble competition

In the earlier model of scramble competition, a reduction in overall wealth
would have produced an equal proportional reduction in the wealth of each
individual. For example, if each individual in a population of size 100 had
wealth 10, then there must have been 10× 100 = 1000 units of wealth in all.
If the population had doubled, each individual would have had 1000/200 = 5
units. Thus, doubling the population size would halve the wealth of each indi-
vidual. We now dispense with the assumption that wealth is evenly divided,
but let us continue to assume that an increase in population size produces
an equal proportional reduction in the wealth of each individual. This pro-
vides a generalized model of scramble competition, in which the ratios of
the wealths of individuals are unaffected by changes in overall wealth. The
generalized model includes the earlier one as a special case in which all indi-
viduals have the same wealth, so that the ratios of individual wealths are all
1:1. The generalized model is more realistic, and may be a fair description of
exploitation competition (Park 1954), the case in which individuals compete
by exploiting a resource to which all have access. Under exploitation compe-
tition, differences in wealth arise solely from differences in ability to exploit
the resource. If Joe can harvest twice as much resource per hour as Jack
can, then he will be twice as wealthy. We are assuming that the magnitude
of Joe’s advantage does not depend on the richness of the habitat.

The question is, under what circumstances is this new, generalized model
stable? This will depend on the slope (dR/d log N) that is referred to in
table 12.1. In an earlier paper (Rogers 1986), I showed that, under the as-
sumptions just stated, this slope is equal to –1 times the slope of the graph
of mean fitness (w̄) against the mean of log wealth. If this latter slope is
small—if mean fitness increases only slowly with the mean of log wealth—
then table 12.1 ensures that equilibria will be stable under generalized scram-
ble competition. Before trying to decide whether this condition is likely to
be satisfied, consider carefully what it means.

Three hypothetical graphs relating mean fitness (w̄) against mean log
wealth is shown in figure 12.10. Log wealth is assumed to follow a normal
distribution (the familiar bell-shaped curve), and curves are shown for three
different values of the standard deviation, σ. When σ = 0 all individuals
have identical wealth, so mean fitness (w̄) is the same as individual fitness
(w). In that case, the curve shown is strongly sigmoid, or “S” shaped. Why?
Because in most species, reproduction is probably impossible unless wealth
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Figure 12.10: Mean fitness, w̄, as a function of mean log wealth
Here σ2 is the variance of log x. It is assumed that fK(x) is log-normally dis-
tributed and that w ∝ 1/(1 + 1/x).

exceeds some minimum value, so below that value the slope of w will be near
zero. The slope will also be near zero where x is large, since there will be
some physiological limit to the number of young that can be produced even if
unlimited resources are available. Thus, the graph of w should be flat at the
left edge of the graph (where x is small) and also at the right edge (where x
is large). The slope should be steepest for intermediate values of x, and may
even approximate a step function there. Thus, when there is no variation
among individuals (σ = 0), the slope of the graph may be very steep in the
central portion. Since this slope is −1 times dR/d log N , table 12.1 shows
that equilibria may easily be unstable. In general, the steeper the graph of
w̄ against log wealth, the more likely dynamics will be unstable.

Now study the curves for σ = 4 and σ = 8, which refer to populations
with greater variation in wealth. Increasing variation tends to flatten out
the curves, and thus makes equilibria more stable. Conclusion: an even
partitioning of resources reduces the stability of population dynamics even
in this generalized model of scramble competion. (For further discussion
of this topic, see  Lomnicki 1978, 1980, 1982,  Lomnicki and Ombach 1984,
 Lomnicki and Sedziwy 1988, 1989, Rogers 1989).

So far, the news about the effects of scramble competition is mostly bad:
The unpleasant results of the earlier model still hold. On the other hand,
there is also good news. If the slope of the fitness function is everywhere less
than two, then the slope of mean fitness (w̄) must also be less than two, and
equilibria will be stable regardless of the distribution of resources among in-
dividuals. Thus, the earlier unrealistic assumption that w is a step function
served to exaggerate the adverse effect of social equality. Real populations
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may be able to survive these adverse effects, provided that their fitness func-
tions are not too steep. It will be important, therefore, to consider how
evolution affects the slope of the fitness function. But first let us generalize
the earlier model of contest competition to see whether w plays an equally
important role there.

Generalized contest competition

The task now before us is that of constructing a model of contest competition
that allows an arbitrary distribution of wealth, and an arbitrary fitness func-
tion. To make it a sensible model of contest competition, we shall require
that additional individuals do not affect the wealth of the individuals already
there. Consider, therefore, a hypothetical territorial population that inhabits
an environment in which the number of territories whose wealth lies between
x and x + dx is h(x)dx, where dx is some very small number. Assume that
individuals always inhabit the best available territory, and let x0(N) denote
the wealth of the poorest territory inhabited in a population of size N .

Box 1 shows that, in this model, dR/d log N |N=N̂ = w(x0) − 1. Conse-
quently, table 12.1 implies that population dynamics will be stable provided
that 0 < w(x0) < 1. In other words, stability requires that the fitness of
the poorest individual in the equilibrium population be between zero and
unity. Now a fitness cannot be negative, so the first of these inequalities
is always satisfied. The second will be satisfied provided only that w is an
increasing function of wealth. With a bizarre fitness function in which fitness
decreases with wealth over at least a part of its range, w(x0) might exceed
unity, making equilibria unstable even under contest competition. But if,
as intuition suggests (see below), fitness always increases with wealth, then
contest competition will always lead to stable population dynamics, at least
in deterministic models such as we have studied.

Real populations, however, are subjected to random perturbations of var-
ious kinds, and these tend to make dynamics less stable than table 12.1 would
suggest. For example, if w(x0) = 0, the analysis above indicates that the pop-
ulation will fall on the boundary between monotone convergence and damped
oscillations. In reality, random effects would cause such a population to os-
cillate towards its equilibrium. On the other hand, if the fitness function is
fairly flat so that w(x0) is close to unity, population dynamics will be more
resistant to random perturbations, and therefore more stable. Thus, even in
the case of contest competition, a steep fitness function tends to destabilize

21



Box 1: Stability under generalized contest competition
Let H(x) denote the number of territories whose quality is less than x. Now

x can take only integer values, but if the total number of territories is large, we
can approximate H(x) by a smooth curve, and write its derivative as h(x) =
dH(x)/dx. The number of individuals in a small interval, [x, x + dx], is H(x +
dx) − H(x), which approaches h(x)dx as x → 0. The total number of territories
is therefore

∫

∞

0 h(x)dx.
To model contest competition, let us assume that each territory can contain

at most one individual, and that the best territories are always occupied first.
Let x0(N) denote the quality of the worst territory occupied in a population of
size N . Then

N =

∫

∞

x0(N)
h(x)dx (12.4)

and the population size in generation t + 1 is related to that in generation
t by Nt+1 =

∫

∞

x0(Nt)
h(x)w(x)dx = NtR(Nt), where w(x) is the fitness (re-

productive success) of an individual in a territory of quality x, and R(N) =
N−1

∫

∞

x0(N) h(x)w(x)dx. The stability of population dynamics depends on the

derivative, dR/dN = (−N−2)
∫

∞

x0(N) h(x)w(x)dx+N−1[w(x0(n))h(x0(N))x′

0(N)]

where x′

0(N) = dx0(N)/dN . To find x′

0(N), differentiate both sides of equa-
tion 12.4 to get. dN/dN = 1 = −h(x0(N))x′

0(N) whence

x′

0(N) = −1/h(x0(N)),

dR

dN
= N−1[w(x0(N)) − R(N)],

and
d log R

dN
= N

dR

dN
= w(x0(N)) − R(N)

Since we are evaluating this derivative at the equlibrium, where R(N) = 1, we
have

d log R(N̂)

dN
= w(x0(N̂ )) − 1.

This result, together with table 12.1, shows that the stabilities of equilibria under
generalized contest competition are determined by w(x0(N̂)), the fitness of the
individual in the poorest inhabited territory in the equilibrium population.
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population dynamics.

12.5 Evolution of the Fitness Function

Evolution affects population dynamics in various ways. Since the behavior of
individuals affects both the distribution of resources among individuals and
the distribution of individuals across the landscape, the evolution of behavior
affects population dynamics. In addition, evolution also affects population
dynamics via its effect on life history strategies, for these strategies determine
the fitness function, w. In simple evolutionary models, selection favors those
who produce the largest number of surviving offspring. If, in addition, one
assumes that the ability to rear offspring is constrained by wealth, then it
follows that the rich should reproduce faster than the poor. Thus, it seems
reasonable to expect that natural selection will favor a fitness function that
increases with wealth.

The evolution of the fitness function is probably also affected by mecha-
nisms of population regulation. MacArthur and Wilson (1967, 1972) distin-
guished between “r-selected” populations, which are usually kept well below
their equilibrim size by density-independent mechanisms, and “K-selected”
populations, which are usually near equilibrium. The terms refer to the
suggestion that r-selection will increase r (the instantaneous growth rate),
whereas K-selection will increase K (the equilibrium size, usually called the
carrying capacity) (Armstrong and Gilpin 1977). This classification has been
of enormous heuristic value in ecology, although it is of only limited value in
describing nature (Begon and Mortimer 1986). More realistic classifications
are available (Caswell 1982, Sibly and Calow 1985, Begon 1985), but require
more detail than is present in the models developed here.

These selection regimes should have quite different effects on the fitness
function, as illustrated in figure 12.11. Under r-selection, resources are usu-
ally abundant, so selection would tend to push the right side of the fitness
function up, increasing its slope. On the other hand, resources are usually
scarce under K-selection, so selection will tend to push up the left side of
the fitness function, decreasing its slope. Consequently, r-selection should
reduce the stability of population dynamics.

Humans are generally regarded as a K-selected species, so these argu-
ments would lead us to expect fitness to increase gently with human wealth.
There is a good deal of evidence, however, that this is not so. Figure 12.12
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Figure 12.11: How r- and K-selection would affect the fitness function.
In a K-selected species, resources are usually scarce, and selection will push up

the left side of the graph. In an r-selected species, resources are usually abundant,

and selection will push the right side up.

shows that the fertility of Brazilian males decreases with wealth, a blatant
contradiction of our expectations. Similar data from a variety of sources
are summarized by Vining (1986), who argues that they indicate that evo-
lutionary arguments are of little relevance in the study of human behavior.
If these data truly represent the human fitness function, then the arguments
presented above suggest that

1. Under scramble competition, dw̄/dz̄ < 0 and therefore dR/d log N > 0,
which means (as table 12.1 shows) that population dynamics will be
unstable.

2. Under contest competition, it is possible that w(x0) > 1, since the
fitness function apparently has a negative slope. This would make
population dynamics unstable even under contest competition!

Thus, a fitness function such as that in figure 12.12 would have bizarre con-
sequences for population dynamics. It might produce instability even in a
population such as our own, which resembles to the ideal of contest compe-
tition more than that of scramble competition.

There are, however, reasons to be skeptical of such conclusions. Even
if the poor do enjoy an advantage during good times, it is hard to imagine
that this advantage could survive under conditions of extreme scarcity. In
addition, other evidence suggests a positive relationship between wealth and
reproduction (Simon 1977, Mealey 1985, Irons 1979, Turke and Betzig 1985,
Essock-Vitale 1984, Borgerhoff Mulder 1989). Furthermore, the number of
one’s offspring may not be a good indicator of reproductive success in the
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Figure 12.12: Mean fertility of Brazilian males by wealth quintile (Lam 1986).

long run. This is particularly true of species, such as our own, in which
wealth can be passed on from generation to generation. To show why, the
next section will discuss a model (Rogers 1990, Harpending and Rogers 1990)
of natural selection with heritable wealth.

12.5.1 Optimal reproduction when wealth is heritable

Humans are unusual in that they can inherit wealth, as well as genes, from
their parents, and can pass these bequests on to their own children if they
choose. Thus, a bequest left by a parent may affect the reproductive success
of his descendants for several generations. Wealthy parents must choose
between producing many offspring who will each inherit relatively little, or
a few who will each inherit much more. Which choices would be favored by
natural selection?

To answer this question, we need a an evolutionary model that allows
reproductive opportunities to vary with wealth, that allows wealth to be
inherited, and that uses an unusual measure of fitness. In this context,
the appropriate measure of fitness is not the number of one’s offspring, but
the number of one’s descendants in some generation in the distant future.
In a recent paper (Rogers 1990), I developed such a model, and showed
that reproductive strategies that maximize the number of one’s offspring do
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not necessarily maximize the number of one’s descendants in the long run.
Similar effects arise even when wealth is not heritable. For example, David
Lack (1948) showed that birds must limit the number of offspring hatched in
order to maximize the number that survive to breed. R.A. Fisher’s (1958)
model of sex ratio evolution looked beyond the number of offspring produced,
and showed that selection maximizes the number of one’s grandchildren. The
novelty introduced by heritable wealth is that one must also look beyond the
number of grandchildren. It no longer suffices to count either the surviving
children or the grandchildren produced. One must count the number of
descendants produced in some generation in the distant future.

My model allowed each parent to allocate some portion of her wealth
(the “fertility allocation”) toward the production of offspring, and divided
the rest as bequests among the offspring that she produced. A reproductive
strategy was taken to be a rule specifying the fertility allocation as a function
of wealth, and optimal reproductive strategies were those which maximized
the long-term rate of increase in the numbers of one’s descendants. Increas-
ing fertility allocations yielded increasing fertility, as specified by the fitness
function, which was assumed to follow a law of diminishing returns. One of
the fitness functions that was used is illustrated by the open circles in the
upper panel of figure 12.13. In addition to inheriting wealth, offspring also
earn some on their own, as specified in the figure legend.

The optimal reproductive strategy is the one that maximizes the ulti-
mate rate of increase in the number of one’s descendants, and is found by a
method that is discussed in the next section. For now, it is important only to
notice that, as the upper panel in figure 12.13 shows, optimal fertility is not

an increasing function of wealth under these assumptions. It increases, then
decreases, then increases again. The lower panel in this figure graphs what
is called “long-term fitness” as a function of wealth. Long-term fitness is dis-
cussed further below, and measures one’s genetic contribution to generations
in the distant future. Note that long-term fitness increases with wealth even
though fertility does not.

The assumptions of this model are too unrealistic for it to be of much
use in data analysis. Its value lies in what it shows us about the possibilities
that may arise under evolution in structured populations. When individuals
may belong to one of several classes, and when these classes offer differing
reproductive opportunities, we cannot measure fitness in terms of offspring
produced. As we have just seen, there need be no simple relationship between
the number of one’s offspring, and one’s expected genetic contribution to
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Figure 12.13: Optimal reproduction in an environment of intermediate qual-
ity
Upper panel: The dotted line panel shows the relationship between fertility and the

allocation of wealth to fertility. The solid line shows optimal fertility as a function

of total wealth, assuming that, in addition to her inheritance, each offspring may

“earn” some wealth on her own. Earnings are a Poisson random variable with

mean 3. Lower panel: The solid line graphs, as a function of total wealth, the

long-term fitness of individuals adopting the optimal reproductive strategy. The

open circles show long-term fitness in a model with the same parameters except

that maximal wealth is 40 instead of 15. λ is the long-term growth rate, rkids is

the correlation between long-term fitness and fertility, and rwealth the correlation

between long-term fitness and wealth.
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future generations. Thus, in structured populations, we should seek ways
to measure long-term fitness. The next section shows how this can be done
using, as an example, the fertility and mobility among four social classes in
the population of England and Wales.

12.6 Long-term Fitness and Social Class

Berent (1952: 247) described the fertility and mobility among four British
social classes. For convenience, I number these from 1 to 4, with 1 represent-
ing the lowest class and 4 the highest (Berent, incidentally, used the opposite
system). The pattern of fertility and mobility among the classes in Berent’s
data can be described by a matrix,

G =











1 2 3 4

1 1.81 0.77 0.33 0.15
2 1.34 1.36 0.72 0.30
3 0.37 0.49 0.94 0.57
4 0.04 0.12 0.18 0.86











whose ijth entry (the entry in row i and column j) is the mean number of
offspring of social class i produced per parent of class j, after one generation.
Clearly, we could construct such a matrix for categories of wealth, religion,
or anything else. The approach described here is a simplified version of the
methods described by Bartholomew (1982), Lam (1986), Chu (1987), Rogers
(1990), and Harpending and Rogers (1990).

12.6.1 Projecting fitness forward in time

We are interested in the genetic contribution made by members of each class
to the distant future, but let us begin by summing the rows of G to calculate
the number of offspring born to members of each class. This gives 3.56 for
class 1, 2.73 for class 2, 2.17 for class 3, and 1.88 for class 4. Now we can
calculate the numbers of grandchildren for each class as follows.

10.98 = 1.81 × 3.56 + 1.34 × 2.73 + 0.37 × 2.17 + 0.04 × 1.88

7.72 = 0.77 × 3.56 + 1.36 × 2.73 + 0.49 × 2.17 + 0.12 × 1.88

5.51 = 0.33 × 3.56 + 0.72 × 2.73 + 0.94 × 2.17 + 0.18 × 1.88

4.20 = 0.15 × 3.56 + 0.30 × 2.73 + 0.57 × 2.17 + 0.86 × 1.88
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Figure 12.14: Projection of fitnesses using British social mobility matrix
Numerical projection of fitnesses using Berent’s data (matrix G) on fertility and

social mobility.

Note that each row above uses the values from one column of G along with
the fertility values that we just calculated. The first row says that each parent
in class 1 produces 1.81 class 1 offspring that each produce 3.56 grandchil-
dren, 1.34 class 2 offspring that each produce 2.73 grandchildren, 0.37 class
3 offspring that each produce 2.17 grandchildren, and 0.04 class 4 offspring
that each produce 1.88 grandchildren. Adding these up gives 10.98, the total
grandchildren per parent in class 1.

To summarize these calculations, it is helpful to have an algebraic formula.
Let us write wi(1) for the expected number of offspring of individuals of
class i, wi(2) for the expected number of their grandchildren, wi(3) for their
expected great grandchildren, and so forth. In general wi(t) will be called
the “t-generation fitness” of individuals in class i. The arithmetic of the
preceding paragraph is summarized by the formula

wi(t + 1) =
∑

j

gjiwj(t) (12.5)

By applying this recipe again and again, we can find the number of descen-
dants in any future generation produced by individuals in each social class.
The results of this procedure are shown in figure 12.14. Notice that the curves
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Table 12.2: Stable wealth distribution and long-term fitness
“Fertility” is the number of offspring born per family within a ten year period, and

“long-term fitness” of each class measures the eventual reproductive success per

family in that class relative to that of an average family (see text for details). As

the population grows, the relative frequencies of the four social classes converge to

the “stable distribution.”

Long-term Stable
Social Class Fertility Fitness Distribution

1 3.56 1.37 0.36
2 2.73 0.92 0.41
3 2.17 0.61 0.18
4 1.88 0.41 0.05

for the four social classes form straight, parallel lines after the first few gen-
erations. Since the y axis is on log scale, these lines can be straight only if
the t-generation fitnesses are increasing exponentially. The fact that the four
lines are parallel means that all four classes have the same rate of exponential
increase. It also means that the ratios, wi(t)/wj(t), between pairs of social
classes have stopped changing. Thus, after two or three generations the t-
generation fitnesses have converged to the “long-term fitness” values. These
can be written in standard form by dividing wi(t) by the mean t-generation
fitness. The result (table 12.2) shows that long-term fitness declines steadily
with wealth, and that the poorest class has over three times the long-term
fitness of the wealthiest class. This means that, eventually, individuals of the
lowest class will achieve more than three times the genetic representation of
individuals in the highest class. Incidentally, long-term fitness is equivalent
to a quantity that is called the reproductive value in demography (Fisher
1958: ; see section 11.2.1). I have used a different term here since “repro-
ductive value” conventionally refers to categories of age rather than social
class.

We are now in a position to re-evaluate my criticism of Vining’s (1986)
argument that since fertility declines with social class, humans must not be
striving to maximize reproductive success. In response to Vining’s article
(Rogers 1990), I objected that his conclusion was not justified because the
number of one’s offspring may be a poor indicator of long-term fitness. Poor
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parents might have lower long-term fitness in spite of their higher fertilty.
However, the long-term fitnesses in table 12.2 suggest that Vining was right
after all, at least for this British population. The poor have greater repro-
ductive success even in the long run. If these data are to be believed, and
if the pattern of reproduction that they describe continues, then the British
population will eventually be dominated by the genes of those now in the
lower classes, as Fisher (1958) first suggested in 1930.

There are, however, reasons to be skeptical of this conclusion. Berent’s
data on reproductive success tell us only the number of births during the 10
years before the sample was taken. We do not know what fraction of the
infants born survived to maturity, and neither do we know what fraction of
these survivors were able to form families of their own. It is possible that
lower class individuals are less likely to survive, or to marry, than their upper
class counterparts. Furthermore, I have taken no account of nonpaternity—
the possibility that some of the offspring in Berent’s data have been at-
tributed to men not their biological fathers. Estimated rates of nonpaternity
vary from population to population, ranging from 2.3% to 30% (Potthoff and
Whittinghill 1965, Peritz and Rust 1972, Philipp 1973, Neel and Weiss 1975,
Ashton 1980, Lathrop et al. 1983). If the biological father tends to come
from a different social class than the putative father, then my calculation of
the long-term fitnesses from Berent’s data may be badly in error.

On the other hand, it is also possible that the human adaptation is out
of date, as Vining suggested. Perhaps we behave in ways that increased
the reproductive success of our ancestors, but no longer do so today. If so,
evolutionary theory will still be useful in discovering why the human mind has
evolved into its present form, but we should not expect humans to maximize
reproductive success in modern environments (Symons 1989, Blurton Jones
1990).

12.7 Conclusions

The human population has grown at an unprecedented rate for longer than
anyone now alive can remember, but this epoch of rapid growth appears to be
drawing to a close. Mechanisms of density-dependent population regulation
will have increasingly severe effects in the decades to come. Yet this need
not imply that our population is converging toward some equilibrium size.
Density-dependent population regulation can also generate various kinds of
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unstable dynamics, in which population numbers rise and fall cyclically. The
response of our population to increasing scarcity will depend on a variety of
factors. Behaviors such as territoriality and behavioral dominance tend to
stabilize population dynamics while the clumping of populations into towns
and cities may have the reverse effect.

All of these effects are mediated by the “fitness function” which relates
reproductive success to wealth. Plausible assumptions about the fitness func-
tion imply that population dynamics will be somewhat more stable than
simple models predict. However, there is evidence of a bizarre relationship
between wealth and human reproduction. In many human societies, the poor
consistently have more children than the rich. This need not imply that they
have more descendants in the long run, for wealthy offspring may enjoy im-
proved reproductive opportunities. Thus, the small, wealthy progeny of a
rich woman may generate more great great grandchildren than the large,
poor progeny of her impoverished sister. However, data from the post World
War II population of England and Wales suggest that exactly the opposite
is true. Individuals of the poorest class produce roughly twice the offspring
of the richest class, and their advantage in long-term fitness is even greater.
Members of the poorest class will ultimately produce more than three times
as many descendants as do members of the richest class.

This finding does not settle the issue, for it is based on data that are
inadequate in several ways. What it will do, I hope, is to show clearly what
is at issue, and how that issue might be settled with better data.
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