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Abstract

George Williams proposed in 1957 that menopause evolved because, late in life, women have more
to gain from child care than from continued fertility. I develop here a quantitative model of this idea in
order to determine whether the proposed benefit is in fact larger than the cost.

To make this work possible, I introduce an age-structured theory of kin selection that allows for
a time delay between an act of altruism and the benefit it provides. Using this theory, I show that in
age-structured populations, conventional inclusive fitness calculations are justified for effects on fertility
only when either the population is stationary or there is no delay between cost and benefit. For effects
on mortality, conventional calculations also require that donor and recipient be affected at the same age.

I then introduce two versions of Williams’s idea. Model I assumes that menopause is maintained
because it reduces the risk of mortality during childbirth, thus increasing the provision of parental care.
The analysis demonstrates that this model is incapable of accounting for menopause. Model II assumes
that menopause facilitates parental care by reducing the time during which a woman is partially inca-
pacitated by the demands of pregnancy and infant care. This model could not be rejected. However, a
definitive test will require parameter estimates that are not yet available.

Women who reach age 45 can expect to live several additional decades, but are extremely unlikely to
produce additional children. This is puzzling. Would selection not favor women who continued reproducing
into their forties and fifties? Some have suggested that this discrepancy is an artifact of a recent evolutionary
change in lifespan (Weiss, 1981). But this is merely to look at the puzzle from a different direction. The
puzzle becomes that of explaining how selection could have favored a longer life, given that reproduction
stops by age 45. According to the evolutionary theory of senescence (Hamilton, 1966; Charlesworth, 1980),
selection does not oppose mutations that increase mortality beyond the age of last reproduction. Thus,
deleterious mutations accumulate late in life and the post-reproductive lifespan should be short (Williams,
1957). This seems to be true of most organisms (Williams, 1957; Hill and Hurtado, 1991) but is manifestly
not true of human females.

Williams (1957) proposed a solution to this puzzle. He suggested that late in life a woman has more to
gain from child care than from continued fertility. Menopause eliminates the risk that a woman will die in
childbirth, and be thus unable to care for existing offspring. This increases the survival or fertility of existing
offspring, thereby compensating for the foregone fertility. Menopause does not happen earlier because the
reduction in risk provided by menopause is not important to young women, whose risk of mortality during
childbirth is comparatively low, and who have few children to care for anyway. It has not evolved in other
species because the human pattern of intense, long-lasting parental care is rare in nature.

Several authors have elaborated on this theme (Hamilton, 1966; Gaulin, 1980; Lancaster and King,
1985; Alexander, 1990; Pavelka and Fedigan, 1991). Hawkeset al. (1989) suggest a variant of Williams’s
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hypothesis: Menopause allows mothers to devote more time to provisioning their grown daughters, thus
increasing the rate at which these daughters reproduce. The older women might also achieve the same end
by caring for their daughters’ children (Pennington, 1991; Pennington and Harpending, 1993).

Few attempts have been made to test any of these hypotheses. Mayer (1982) suggests that if post-
reproductive life is indeed advantageous, then women who live beyond menopause should have higher
inclusive fitness than those who do not. Mayer must have had in mind a comparison between women
who die at the age of menopause and those who live beyond. However, the comparison he actually makes
is different. Instead of estimating the inclusive fitness of women who died at the age of menopause, he
estimates that of women who died at any earlier age. This biases his result because women who die early
in life are likely to produce fewer children simply because of their shortened opportunity for reproduction.
This bias may account for Mayer’s main finding—that women who live beyond menopause have higher
fitness. In addition Mayer uses an erroneous formula (Dawkins, 1982, pp. 185–186) in calculating inclusive
fitness. Thus, his study provides no support for Williams’s hypothesis.

Hill and Hurtado (1991) perform a different test. They estimate the effect of maternal care on children’s
fertility, and conclude that this benefit is not large enough to compensate for the cost of menopause. How-
ever, they consider only one benefit of child care: an increased fertility of grown sons and daughters owing
to assistance from their mothers.

In this paper I develop a more comprehensive model incorporating effects on survival as well as fertility,
and on several generations of descendants. In order to determine whether menopause is evolutionarily stable,
I consider a hypothetical rare allele that increases a mother’s fertility at the age of menopause. If menopause
is stable, then this allele must have an adverse effect on fitness. Thus, the problem is that of determining the
conditions under which such an allele would be selected against. I will show that mortality during childbirth
cannot account for the evolution of menopause, but that the opportunity cost of fertility may.

Age-structured kin selection with time delays

I employ a model of age-structured kin-selection with time delays. Kin-selection is relevant because the
costs and benefits of child care accrue to different individuals: the parent and a child, grandchild, or other
descendant. The model must be age-structured because parents and children are of disparate ages. Time
delays are relevant because the cost and benefits are not simultaneous. A reduction in the mother’s mortality
at agex increases her probability of surviving to agesx + 1, x + 2, x + 3, . . . , and benefits accrue to
offspring at each of these later ages. Previous age-structured models of kin selection (Charlesworth and
Charnov, 1981; Morris et al., 1987; Taylor, 1990), do not allow for any time delay between the altruistic act
and its resulting benefit. Thus, a new model is developed in appendix 1.

In the text, I make three simplifying assumptions regarding sex that are not made in the appendix. A
mother can help her young children of both sexes, but the same may not be true of grown children and
grandchildren. For example, in a matrilocal society a mother could help her grown daughters but not her
grown sons, since the sons move away as they marry. For simplicity, I ignore this distinction. Second, I
assume that equal numbers of daughters and sons are produced. Finally, I ignore the difference between
male and female schedules of survival and fertility. By definition,m(x) is the rate at which daughters are
produced by women of agex. My assumption implies that2m(x) is the rate at which parents of either sex
produce offspring of both sexes.

Table 1 summarizes the effects on fitness of a rare altruist allele. The fate of the allele is determined
by the sum of the products of the entries in the four rows. The allele will increase in frequency if this sum
is positive, and decrease if it is negative. The argument underlying table 1 is given in appendix 1. Here, I
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Table 1: Contributions to Fitness of Altruist Allele
The altruist allele will increase (decrease) in frequency if the sum of row products is positive (negative).

1 2 3 4 5 6 7
Prob. Addi- Repro- Rel’n

Effect of E[# tive ductive Discount to
on act affected] effect value factor donor

Donor
A. fert. l(x1) 1 δm0(x1) 1 e−ρx1 1
B. mort. l(x1) 1 δP 0(x1) v(x1 + 1) e−ρ(x1+1) 1

Recip.(y, τ, g)
C. fert. l(x1) ng(y, τ) δmg(y, τ) 1 e−ρ(x1+τ) rg

D. mort. l(x1) ng(y, τ) δP g(y, τ) v(y + 1) e−ρ(x1+τ+1) rg

present a heuristic justification of the table and illustrate its use.
Column 1 identifies the table’s four rows. An act of altruism can affect the fertility (row A) and mortality

(row B) of the donor, as well as the fertility (row C) and mortality (row D) of recipients. Recipients are
indexed by symbols(y, τ, g), which indicate the recipient’s age(y) when the benefit is received, the delay
(τ) between cost and benefit, and the generation(g) to which the recipient belongs. The donor herself
constitutes generation 0, her children generation 1, her grandchildren generation 2, and so forth.

The altruist allele is expressed only if the donor survives to perform her altruistic act at agex1. Thus,
column 2 shows that the allele’s effect is proportional to the probability,l(x1), of surviving to this age.

Column 3 gives the expected number of individuals affected by an act of altruism, given that it occurs.
Rows A and B reflect the fact that each act of altruism affects just one individual as donor. In rows C and
D, the symbolng(y, τ) represents the conditionally expected number of recipients of generationg and age
y affected when the donor is of agex1 + τ , given that the donor lives at least to agex1. An algorithm
for calculatingng(y, τ) is given in appendix 2. The product of columns 2 and 3 gives the unconditionally
expected number of individuals affected by an individual with the altruist genotype.

Next, column 4 multiplies this product by the additive effect of altruism on age-specific fertility or
survival. The additive effect on fertility at agex is the amount by which altruism increases fertility(m(x))
at that age. For example, altruism changes the donor’s fertility at agex1 from m(x1) to m(x1) + δm0(x1).
The superscript 0 indicates thatδm0(x1) is an effect on generation 0, the donor. Similarly, altruism changes
from P (x1) to P (x1) + δP 0(x1) the donor’s probability of surviving fromx1 to x1 + 1. Finally,δmg(y, τ)
andδP g(y, τ) are additive effects on the fertility and survival, respectively, of recipients of generationg
who are agedy after delayτ . If an act is truly altruistic, then additive effects on the donor must be negative,
and those on recipients positive. However, the results in table 1 hold regardless of the sign of these effects.
The product of columns 2–4 gives the aggregate effect of an altruist allele on fertilities and mortalities.

Multiplying by column 5 re-expresses these effects in a single currency: births. This makes the entries
in rows A and C (for fertility effects) very simple: a unit change in fertility contributes one birth to our sum.
Rows B and D (for mortality effects) are less simple. Effects on survival at agex increase (or decrease) the
chance of surviving to agex+1, in effect adding (or subtracting) individuals of reproductive valuev(x+1).
The reproductive value can be thought of as a sum of the future births that this individual is expected to
produce, with births at agey discounted bye−ρy.

Similar discount factors are listed in column 6, and can be understood as follows. The birth of an altruist
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at timey increases the frequency of the altruist allele by1/2N(y), whereN(y) is the size of the population
at timey. Thus, we must weight each birth by1/2N(y). This is equivalent to weighting bye−ρy since our
assumptions imply that the population is increasing exponentially at rateρ. The product of columns 2–6
gives the expected effect of an altruist gene on births, appropriately discounted.

However, we are not interested in all births, but only in the births of new altruist individuals. Thus, each
birth must be multiplied by the probability that the newborn carries the altruist allele. This is accomplished
by column 7, which lists the coefficient of relationship between the affected individual and the donor. It
equals 1 when the affected individual is the donor herself, andrg = 1/2g when descendants of generation
g are affected. When selection is weak and the inheritance system is diploid, the coefficient of relationship
can be interpreted as the probability that the recipient has the altruist allele given that the donor does.

To illustrate the use of table 1, I shall now derive extensions of Hamilton’s rule (Hamilton, 1975) that
incorporate the effects of age structure and time delays. In each case I assume that there is exactly one
recipient so thatng(y, τ) = 1. First, consider the case in which altruism affects mortality only so that
δm0(x1) = δmg(y, τ) = 0. The benefit is received by a recipient of agey after a delay ofτ units of time.
The altruist allele is favored by selection only if the sum of row products from table 1 is positive, i.e. if

0 < l(x1)δP 0(x1)v(x1 + 1)e−ρ(x1+1)

+ l(x1)δP g(y, τ)v(y + 1)e−ρ(x1+τ+1)

This is equivalent to
rgbe

−ρτv(y + 1) > cv(x1 + 1) (1)

wherec = −δP (x1) is the cost of altruism to the donor, andb = δP g(y, τ) is the benefit to the recipient.
On the other hand, if altruism affects fertility but not mortality, thenδP 0(x1) = δP g(y, τ) = 0. Sum-

ming row products A and C from table 1 shows that the altruist allele is favored if

rgbe
−ρτ > c (2)

wherec = −δm0(x1) is the cost of altruism, andb = δmg(y, τ) the benefit.
Equations 1 and 2 extend “Hamilton’s rule” (Hamilton, 1975) to deal with age-structure and time delays.

Comparison with the original rule,rb > c, shows that the original rule applies only where either there is no
delay(τ = 0) or else the population is stationary(ρ = 0). For mortality effects, the original version also
requires that donor and recipient each be affected at the same age so thatv(x1 + 1) = v(y + 1).

Time delays appear not only in life history evolution, but also in contexts ranging from foraging ecol-
ogy (Stephens, 1990) to evolutionary economics (Rogers, 1994). Inclusive fitness models usually ignore
these delays, calculating inclusive fitness as a weighted sum of effects on self and relatives irrespective
of the timing of these effects. The present results show that this procedure is justified only in stationary
populations.

Two Models of Menopause

This section uses the results of the preceding section to develop two models of menopause. Both models
consider the fate of a hypothetical mutant allele that increases the fertility of a woman whom I shall call
Ego. The increase occurs at the age,x1, of menopause. Each model proposes a different mechanism by
which this increased fertility reduces Ego’s ability to care for existing children. In each case, the goal is to
specify the conditions under which the mutant allele will be selected against, i.e. the conditions under which
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Table 2: Components of fitness under Model I
Row Row Product
A l(x1)δm0(x1)
B l(x1)δP 0(x1)v(x1 + 1)
C l(x1)

∑∞
τ=1

∑∞
g=1 rg

∑x1+τ−1
y=0 ng(y, τ)δmg(y, τ)

D l(x1)
∑∞

τ=1

∑∞
g=1 rg

∑x1+τ−1
y=0 ng(y, τ)δP g(y, τ)v(y + 1)

menopause is evolutionarily stable. Throughout, I assume that the population is stationary so thatρ = 0 and
column 6 of table 1 can be ignored. This seems reasonable since density dependent population regulation
probably kept growth rates near zero throughout most of our evolutionary history.

Model I: Death in childbirth

In model I, the cost of fertility is an increased risk of death during childbirth. Such deaths, of course, end
any further possibility of child care, thus reducing the expected fertility and survival of Ego’s descendants
when she is agedx1 + 1, x1 + 2, and so on. Each of these later ages contributes a term to Ego’s fitness.

These effects are summarized in table 2, which presents the row products from table 1 that model I
implies. The row products A and B are straightforward. The sums in row products C and D include entries
for all the categories of recipients that would be affected by Ego’s death. The delay,τ , runs from 1 to∞ to
account for the fact that Ego’s death at agex1 would affect descendants at each future age. These effects,
of course, grow rapidly smaller so that in practice it is not necessary to sum to infinity. These row products
also sum over the generations(g) and ages(y) of the descendants that are affected at each value ofτ .

Notice that sincex1 is the age of menopause,v(x1 + 1) = 0 and the entry for row B disappears. Thus,
menopause is evolutionarily stable provided that the sum of the entries for rows A, C, and D is negative.

The next step is to incorporate into the model the trade-off between Ego’s fertility at agex1 and the
subsequent survival and fertility of her descendants. This is done in appendix 3, which relates the additive
effects from column 4 of table 1 to two sets of parameters,αg andβg, which measure proportional effects
of Ego’s care on descendants’ fertility and mortality, respectively. By definition, Ego’s care increases the
fertility of descendants of generationg and agey from m(y) to m(y)(1 + αg). Ego’s care has no effect on
the mortality of children older than agex0, but reduces from1− P (y) to (1− P (y))(1− βg) the mortality
of descendants of agey ≤ x0 and generationg. Appendix 3 shows that menopause is evolutionarily stable
under model I provided that

1− µ

µ
<

∞∑
g=1

(αgAg + βgBg) (3)

whereµ is the probability of death during childbirth. The coefficientsAg andBg are defined by

Ag = 2rg

∞∑
τ=1

l(x1 + τ)
x1+τ−1∑

y=0

ng(y, τ)m(y)

Bg = 2rg

∞∑
τ=1

l(x1 + τ)
x0∑

y=0

ng(y, τ)v(y + 1)(1− P (y))

Ag measures the potential aggregate effect of a woman’s child care after agex1 on the fertility of her
descendants, weighted by coefficients of relationship. Similarly,Bg measures her potential aggregate effect
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Table 3: Components of fitness under Model II
Row Row Product
A l(x1)δm0(x1)
B 0
C l(x1)∆t

∑∞
g=1 rg

∑x1−1
y=0 ng(y, 0)δmg(y, 0)

D l(x1)∆t
∑∞

g=1 rg
∑x1−1

y=0 ng(y, 0)δP g(y, 0)v(y + 1)

on descendants’ mortality. Whereasαg depends on behavior but not on demographic parameters, the reverse
is true ofAg. αg measures the effect of maternal care on the fertility of individual descendants.Ag can be
thought of as measuring the numbers of these descendants. The same comments apply to the distinction
betweenβg andBg.

Before this inequality can be used, a decision must be made about the time units to be used. The five-
year intervals in which demographic data are conventionally tabulated would be inappropriate here: their
use would imply that a mother’s death has no effect on the child care she provides until five years later. A
better approximation is obtained by assuming the time units to be instantaneous so thatv(x + 1) ≈ v(x),
the sum fromτ = 1 is approximately equivalent to a sum fromτ = 0, and the expressions above become

Ag ≈ 2rg

∞∑
τ=0

l(x1 + τ)
x1+τ∑
y=0

ng(y, τ)m(y) (4)

Bg ≈ 2rg

∞∑
τ=0

l(x1 + τ)
x0∑

y=0

ng(y, τ)v(y)(1− P (y)) (5)

In spite of the instantaneous time units,Ag andBg can be approximated by applying equations 4 and 5
directly to demographic data tabulated in conventional five-year intervals.

Model II: Opportunity cost of fertility

Model II deals with another cost of fertility. During late pregnancy a woman cannot work as hard as usual.
Even after her child is born, her ability to work is reduced for several months by the need to care for a young
infant. Throughout this period, she is less able to provision other dependents (Hurtado et al., 1985). This
may reduce these dependents’ survival and fertility. Borrowing a term from economics, I refer to this as the
opportunity costof fertility.

The row products for this model are shown in table 3. Row product B is zero because in model II fertility
does not affect Ego’s survival. The care that Ego provides is diminished during a relatively brief interval
from x1 to x1 + ∆t. Since descendants are affected only during a brief interval, we can ignore variation
within this interval inm(x), l(x), andv(x). The sum overτ that appeared in Model I can thus be replaced
by the product of the value atτ = 0 times the width∆t of the interval.

The next step is to express the additive effects on descendant fertility and survival in terms ofδm0(x1),
the increase in Ego’s fertility at the age of menopause. I assume that the effects of absent maternal care on
the fertility and mortality of an average descendant of generationg and agey are proportional to the change
in their ancestor’s total (male plus female) birth rate,2δm0(x1). Thus,

δmg(y, 0) = −2α∗gm(y)δm0(x1) (6)

δP g(y, 0) =
{
−2β∗g (1− P (y))δm0(x1) if y ≤ x0

0 if y > x0
(7)
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Table 4: Coefficients for Model I
Ag andBg are weights given by inequality 3 to effects on fertility and mortality, respectively, of descendants
of generationg.

Generation Fertility Survival
g Ag Bg

x0 = 5 yrs x0 = 10 yrs
1 1.590 0.026 0.056
2 0.418 0.686 0.742
3 0.018 0.168 0.175
4 0.000 0.007 0.007

whereα∗g andβ∗g are analogous to the parametersαg andβg of model I. As with Model I,δP g(y, 0) is
assumed to be proportional to mortality,1 − P (y), rather than to survival,P (y). Substituting equations 6
and 7 into table 3 and setting the resulting sum< 0 shows that Model II can account for menopause provided
that

1 < ∆t
∞∑

g=1

(α∗gA
∗
g + β∗gB∗g) (8)

where

A∗g = 2rg

x1∑
y=0

ng(y, 0)m(y) (9)

B∗g = 2rg

x0∑
y=0

ng(y, 0)v(y)(1− P (y)) (10)

CoefficientsA∗g andB∗g summarize the effects of all demographic parameters, while the effects of behavior
are summarized in∆t αg and∆t βg. I have again assumed that the units of time are small.A∗g andB∗g can
be approximated as before by applying the formulae directly to conventionally tabulated demographic data.

Evaluating the Models

This section estimates several of the parameters of the two models, and makes conservative guesses at the
rest in order to decide whether either can account for menopause.

Model I

I evaluated equations 4–5 using data from the 1906 population of Taiwan (Hamilton, 1966), with two differ-
ent assumptions aboutx0, the age beyond which offspring mortality is not reduced much by Ego’s presence.
The results (table 4) measure the potential effect of various kinds of child care on the fitness of a menopausal
woman who provides that care. This potential is realized only if the woman in fact cares for these descen-
dants in ways that enhance their fertility or survival.

The results show that the greatest potential effects of child care are on the fertility of children (generation
1) and the survival of grandchildren (generation 2). The potential effect through survival of younger children
outweighs that through fertility of grown sons and daughters.
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For children, potential effects through fertility outweigh those through mortality, yet the reverse is true
for grandchildren. Presumably, this is because fertility is low in the years preceding menopause, so that
menopausal woman usually have more offspring of reproductive age than they have very young children.
However, most of a menopausal woman’s grandchildren are likely to be pre-reproductive. Thus, the largest
potential effects of child care by menopausal women are on the fertility of their children and the survival of
their grandchildren.

To evaluate Model I, we also need an estimate of of the probability,µ, of death during childbirth. This
probability is now extremely low in the US and western Europe, but its decline did not begin until the
middle 1930s. In the decade preceding this decline, the rate of death during childbirth averaged about 6 per
thousand (still and live) births in New York State (Rothman and Rothman, 1987, p. 5), about 6 per thousand
live births in the US as a whole, and about 10 per thousand live births among non-whites in the US (Shapiro
et al., 1968, fig. 7.1). Thus, it seems reasonable to takeµ = 1/100 as an estimate of the rate of death during
childbirth prior to the recent decline in this rate. It is possible that this rate is somewhat higher among
women at the age of menopause. As we shall see, however, minor adjustments of this sort will not affect the
answer.

Model I can account for menopause only if inequality 3 is satisfied. This requires information about
several parameters that have not been estimated. In place of estimates, I have tried to make guesses that will
tend to exaggerate the benefits of menopause. To begin with, I assume thatx0 = 10, that is, that child care
affects survival until children are 10 years old. Second, I assume that living women double the fertility of
their descendants in each generation so thatαg = 1 for all g. Finally, I assume thatβg = 1, which implies
that child care reduces the mortality of all descendants to zero. These assumptions should all exaggerate the
likelihood that inequality 3 will be satisfied. Nonetheless, that inequality becomes

99 < 3.01

which is false. This means that Model I cannot account for menopause. The rate of death during childbirth
is too small to outweigh the obvious benefit of continued fertility.

With realistic estimates ofαg andβg, the right-hand side would be considerably smaller, making the sit-
uation even worse. The conclusion would not change even if we learned thatµ rose by the age of menopause
to 10 times the value assumed here. If menopause is advantageous it must be for some other reason.

Model II

I calculatedA∗ andB∗ from demographic data for the 1906 population of Taiwan, as shown in table 5. As
before, the main potential effects of care are on the fertility of children and the survival of grandchildren.

As before, I make guesses about parameters that have not been estimated so as to exaggerate the benefit
of menopause. First, I assume as before thatx0 = 10, that is, that child care affects survival until children
are 10 years old. Next, I assume thatα∗g = β∗g = 1, just as in the evaluation of Model I. Finally, I assume that
the opportunity cost of fertility lasts three years years, since children begin to be independently mobile by
about this age. This corresponds to a value of∆t = 3/5 when 5-year time units are employed. Inequality 8
becomes

1 < 1.13 (11)

which is satisfied, suggesting that menopause may be evolutionarily stable under this model. However, my
guesses at the values ofα∗g andβ∗g are certainly inflated, and realistic estimates might well reduce the right
hand side by a factor of 10. Thus, it is not clear whether Model II can account for menopause either. It may
do so, however, and better parameter estimates are needed to decide the question.
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Table 5: Coefficients for Model II
A∗g andB∗g are weights given by inequality 8 to effects on fertility and mortality, respectively, of descendants
of generationg.

Generation Fertility Survival
g A∗g B∗g

x0 = 5 yrs x0 = 10 yrs
1 1.229 0.076 0.144
2 0.004 0.498 0.512
3 0.000 0.002 0.002
4 0.000 0.000 0.000

Combining the two models

The two models can also be combined into a single model, incorporating both effects. With my assumptions,
the inequality for this aggregate model is

1− µ < 1.13 + 3.01µ

Sinceµ ≈ 1/100, this inequality is essentially equivalent to (11). The effect of mortality during childbirth
is negligible compared with that of opportunity cost. This finding echoes that of Charnov (1992), who finds
no evidence of any mortality cost to reproduction in female mammals.

Discussion

The models developed here provide a basis for evaluating Williams’s (1957) hypothesis concerning the
evolution of menopause. Model I attributes menopause to the effect of mortality during childbirth on the
provision of parental care. This model is clearly incapable of accounting for the evolution of menopause.

Model II attributes menopause to the opportunity cost of fertility, that is, to the reduction in a mother’s
work capacity caused by pregnancy and infant care. It is not clear whether this model can account for
menopause. A definitive answer must await estimates of several parameters. This will require research into
the effects of maternal care on the mortality of young children and the fertility of grown ones. These effects
can be estimated either by comparing the fertility and mortality of children with living mothers to that of
children whose mothers are dead (Hill and Hurtado, 1991), or by comparing the children of mothers who are
and are not caring for infants. I plan to introduce statistical methods for this purpose in a later publication.

In future work it may also prove useful to explore other ways of implementing Williams’s hypothesis
about menopause. In particular, neither of the models developed here takes proper account of competition
between siblings for parental care. Because of this competition, a child’s survival or fertility may decrease
with the number of his or her siblings. Model I ignores this problem entirely. Model II allows care of small
infants to interfere with care of older siblings, but takes no further account this problem.
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Appendix 1: Age-structured Kin Selection with Time Delays

This section outlines an age structured theory of kin selection in which one individual (the “donor”) suffers
a cost in return for a benefit to be received by a relative (the “recipient”) after a delay ofτ units of time.
When the coefficient of relationship,r, between donor and recipient is unity, this model becomes a special
case of the age structured models described by Charlesworth (1980). On the other hand, when the delay
approaches zero, this theory reduces to the model of age-structured kin selection presented by Charlesworth
and Charnov (1981). The argument follows that of Charlesworth and Charnov very closely, and the notation
is changed only slightly. My goal here is to derive conditions under which a rare altruist allele will increase
in frequency.

Consider an allele,A2, that is a rare variant in a population dominated by alleleA1. Nearly all carriers
of A2 will be A1A2 heterozygotes, who will nearly always mate with the common genotypeA1A1. Thus,
other genotypes and mating types can be neglected. Subscriptsm andf will be used to indicate males and
females, respectively. Let

si = the proportion of sexi among newborns,i ∈ {m, f},
B(t) = the number of births at timet,

B2(t) = the number ofA1A2 individuals born at timet,

ρ = the exponential growth rate of a pure population ofA1A1 individuals,

p2(t) = the frequency ofA2 among individuals born at timet.

In addition, for individuals of genotypeA1Ai and sexg, whereg ∈ {m, f}, define

Pig(x) = the probability of surviving from agex to agex + 1,

lig(x) =
∏x−1

u=0 Pig(u), the probability of surviving from birth to agex,

mig(x) = the expected number of newborns of sexg produced per parent of sexg at agex,

kig(x) = lig(x)mig(x), the net reproductive function

vg(x) =
(
l1g(x)e−ρx

)−1 ∑
y=x e−ρyk1g(y), the “reproductive value” (Fisher, 1958) ofA1A1 individ-

uals of sexg and agex.

If A2 is rare enough that terms of orderp2
2(t) are negligible, then (Charlesworth, 1980, p. 169) its asymptotic

rate of increase is given approximately by the real root,z, of the characteristic equation,

1 =
1
2

∑
x=0

e−(z+ρ)x[k2f (x) + k2m(x)] (12)

The altruist allele is favored by selection ifz > 0. Our problem is thus to determine the sign ofz. Define
δk(x) by

k2f (x) + k2m(x) = k1f (x) + k1m(x) + δk(x)

so that equation 12 becomes

1 =
1
2

∑
x=0

e−(z+ρ)x[k1f (x) + k1m(x) + δk(x)] (13)

10
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The quantity in square brackets is guaranteed to be non-negative for allx. Therefore, if the quantitye−(z+ρ)x

is arbitrarily replaced bye−ρx, the right hand side is> 1 if z > 0, and< 1 if z < 0. Becauseρ is
itself the solution of1 = 1

2

∑
x e−ρx[k1f (x) + k1m(x)], it follows that the sign ofz is the same as that of

∆ =
∑

x=0 e−ρxδk(x). Thus, the altruist allele can invade if and only if∆ > 0.
It will be useful here to establish the relationship between the net reproductive functions (k2m(x) and

k2f (x)) of genotypeA1A2 and its birth rate,B2(t). First considerA1A2 births at timet due to females of
agex. These mothers are the survivors of a cohort ofB2(t − x)sf females born at timet − x, of which a
fractionl2f (x) still survives. These survivors will each have mated with males of genotypeA1A1 (sinceA2

is rare), and at agex will each producem2f (x)/sf offspring of both sexes of which 1/2 will beA1A2. Thus,
a total of 1

2B2(t − x)k2f (x) offspring of genotypeA1A2 are born at timet to mothers of agex. Similarly,
1
2B2(t− x)k2m(x) such offspring are born to fathers of agex. Summing over ages of parents,

B2(t) =
1
2

∑
x

B2(t− x)[k2f (x) + k2m(x)] (14)

The contributions of males and females add because whenA2 is rare, matings betweenA1A2 males and
females can be neglected. This formula is used several times below.

Although the effect of altruism on the donor is immediate, its effect on the recipient is delayed byτ
units of time. Donors perform their altruism at agex1, and recipients receive the benefits at agex2. Let
α = x1 + τ − x2 denote the age difference between donor and recipient, and denote byr the coefficient of
relationship between donor and recipient (which can be interpreted as the probability that the recipient is of
genotypeA1A2, given that the donor is). Throughout, the subscriptsD andR will be used to index the sex
of donor and recipient, respectively. For example,sD andsR are, respectively, the proportion of the donor’s
and the recipient’s sex among newborns. The effect of altruism turns out to depend on whether its costs and
benefits affect mortality or fertility.

Mortality effects

Altruism increases the donor’s risk of mortality at agex1, and decreases that of the recipient at agex2. The
rate at which newA1A2 individuals are produced at timet is affected by altruism in two ways. There is (1)
a reduction in the numbers ofA1A2 parents of sexD who are older thanx1 because of the costs of altruism,
and (2) an increase, owing to altruism’s benefits, in the numbers ofA1A2 parents of sexR who are older
thanx2.

Mortality of donor

Altruism adds a negative quantity,δP1D(x1), to the probability that the donor will survive from agex1 to
x1 + 1. For agesx > x1 this addsδ1l1D(x) to the donor’s survivorship, whereδ1 = δP1D(x1)/P1D(x1).
Consequentlyδ1k1D(x) is contributed toδk(x) at all ages abovex1. The total contribution to∆ from
mortality effects on the donor is

∆DM = δ1

∑
x=x1+1

e−ρxk1D(x)

= δ1e
−ρ(x1+1)l1D(x1 + 1)vD(x1 + 1)

= δP1D(x1)l1D(x1)e−ρ(x1+1)vD(x1 + 1) (15)

Row B of table 1 is obtained from this result by supressing the subscripts that indicate genotype.

11
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Mortality of recipient

Each act of altruism addsδP1R(x2) to the probability that a recipient will survive fromx2 to x2 +1. This in-
creases the recipient’s chances of surviving to each agex (> x2) by δ2l1R(x), whereδ2 = δP1R(x2)/P1R(x2).
Forx > x1, x2 there are additional terms of orderδ1δ2, which can be ignored provided that selection is weak.
In order to understand how all of this affects∆ it is helpful first to consider the effect onB2(t).

The number of altruistic acts at any given time depends on the number of donors of agex1, and the
combined beneficial effect of these acts adds

rsDl2D(x1)δ2e
−ρα

2sRl1R(x2)

∑
x=x2+1

B2(t− x)l1R(x)m1R(x) (16)

to the number ofA1A2 births at timet. Before explaining the relevance of this formula, I sketch its deriva-
tion. Recipients of agex (> x2) at timet are affected by interactions with donors who were born at time
t− x− α. A total of sDB2(t− x− α) = sDB2(t− x)e−ρα such donors were originally born, and of these
a fractionl2D(x1) survive to agex1. I assume that a recipient exists for each act of altruism. Each act of
altruism increased byδ2l1R(x)/l1R(x2) the recipient’s probability of surviving from agex2 to agex. Of
these recipients, a fractionr are themselvesA1A2 heterozygotes, and each of these producesm1R(x)/sR

newborns (of both sexes and both genotypes) at timet, of which 1/2 are themselvesA1A2.
Expression 16 is a contribution to the right hand side of equation 14. Equating terms inx shows that

effects on recipients increasek2R(x) by an amount equal to the coefficient ofB2(t− x) in (16). This is the
contribution made toδk(x) by effects on recipients. The contribution to∆ is therefore

∆RM =
rsDl1D(x1)δ2l1R(x2 + 1)vR(x2 + 1)

sRl1R(x2)eρ(α+x2+1)

= l1D(x1)e−ρ(x1+1)re−ρτδP1R(x2)vR(x2 + 1)sD/sR (17)

In the first line above I have substitutedl2D(x1)δ2 ≈ l1D(x1)δ2. This approximation is exact ifx1 < x2,
but otherwise ignores a term of orderδ1δ2.

So far, I have assumed that exactly one recipient exists for each act of altruism. If instead the number
of recipients is a random variable, then∆RM is inflated by a factor ofn, wheren is the conditionally
expected number of recipients given that the act of altruism was performed. Row D of table 1 is obtained by
supressing subscripts and assuming a balanced sex ratio so thatsD = sR = 1/2.

Fertility effects

Let us now consider behaviors that lower the fertility of the donor, but raise that of the recipient.
Altruism adds a negative increment,δm1D(x1), to the birth rate of each donor agedx1. Thus, the

contribution toδk(x) is zero unlessx = x1, and the contribution to∆ of fertility effects on donors is

∆DF = e−ρx1 l1D(x1)δm1D(x1) (18)

Supressing the subscripts denoting genotype yields row A of table 1.
Altruism adds a positive increment,δm1R(x2), to the birth rate of each recipient agedx2. The rate of

A1A2 births at timet is thus augmented by

1
2
rB(t− x1 − τ)l1D(x1)δm1R(x2).

12
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Proceeding as in the case of mortality effects on recipients, we find that the contribution to∆ of fertility
effects on recipients is

∆RF = re−ρ(x1+τ)l1D(x1)δm1R(x2) (19)

This formula assumes that there is exactly one recipient per act of altruism. To deal with a variable number
of recipients, this formula must be inflated by a factor ofn, wheren is the conditionally expected number
of recipients, given that the act of altruism was performed. This is the basis of row C in table 1.

Appendix 2: Numbers of descendants

Let si(y) denote the conditionally expected number of descendants of generationi born when the ancestor’s
age isy, given that the ancestor lives at least to agex1. Children are in generation 1, and the conditionally
expected number born at timey is

s1(y) =
{

2m(y) if y ≤ x1

2k(y)/l(x1) if y > x1,

wherek(y) = l(y)m(y). Generations2, 3, . . . refer to grandchildren, great grandchildren, and so forth.
Their expected numbers obey

si+1(y) =
∫ y

0
si(z)k(y − z)dz

The conditionally expected number of individuals of generationg and agez who are alive when the ances-
tor’s age isx1 + τ , given her survival tox1, is

ng(z, τ) = sg(x1 + τ − z)l(z)

Appendix 3: Derivation of inequality 3

Let µ denote the rate of death during childbirth. I define the gross age-specific rate of female fertility,
m̃(x), to include all female births including those that lead to the mother’s death. The net rate,m(x) =
(1 − µ)m̃(x), excludes these latter births since infants are unlikely to survive their mother’s death. The
mutant allele increases Ego’s gross female fertility fromm̃(x1) to m̃(x1) + δm̃0(x1) during the interval
from agex1 to agex1 + 1. The net increase is

δm0(x1) = (1− µ)δm̃0(x1) (20)

Ego’s increased fertility at agex1 also reduces the probability of her survival fromx1 to x1 +1. If Ego’s
fertility were normal, this probability would be

P (x1) = e−2µm̃(x1)P̃ (x1)

whereP̃ (x1) is the probability of survival in the absence of fertility ande−2µm̃(x1) is the probability of
surviving death during childbirth between agesx1 andx1 + 1. The factor of 2 appears because although
only female births contribute to the sum from table 1, the mother’s mortality rate is increased by births of
both sexes. Because of her increased fertility, Ego’s probability of survival fromx1 to x1 + 1 is

P (x1) + δP 0(x1) = e−2µ[m̃(x1)+δm̃0(x1)]P̃ (x1)

13
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These equations imply that

δP 0(x1) =
(
e−2µδm̃0(x1) − 1

)
P (x1) ≈ −2µδm̃0(x1)P (x1) (21)

provided thatµδm̃0(x1) is small.
Additional indirect contributions appear because Ego’s probability of surviving from birth to each age

x > x1 is decreased to

l(x) + δl(x) = l(x)
P (x1) + δP 0(x1)

P (x1)
= l(x)[1− 2µδm̃0(x1)]

The change in survival forx > x1 is thus

δl(x) = −2l(x)µδm̃0(x1) (22)

If Ego does not survive to agex, she will be unable to care for her children, grandchildren, and other
descendants, thus reducing their fertility and survival.

To account for these effects on descendants, I assume that the mutant allele adds

δmg(y, τ) = δl(x1 + τ)αgm(y) (23)

to the fertility of each generation-g descendant who isy years old when the ancestor is of agex. The
parameterαg measures the proportional effect of Ego’s care on the fertility of these descendants.

Similarly, βg measures the proportional effect of Ego on descendants’ mortality. I assume that child
care by Ego has no effect on the survival of children older than agex0, but that it increases fromP (y) to
P (y) + βg(1− P (y)) the age-specific survival of children of agey ≤ x0 and generationg. In expectation,
the mutant allele adds

δP g(y, τ) =
{

δl(x1 + τ)βg(1− P (y)) if y ≤ x0

0 otherwise
(24)

to the survival of each of these descendants. Notice that the effect on survival is proportional to mortality,
1− P (y), rather than to survival,P (y).

Inequality 3 is obtained by substituting equations 20–24 into table 2 and setting the resulting sum< 0.
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