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GENETIC EVIDENCE FOR A PLEISTOCENE POPULATION EXPLOSION

ALAN R. ROGERS
Department of Anthropology, University of Utah, Salt Lake City, Utah 84112
E-mail: rogers@anthro.utah.edu

Abstract.—Expansions of population size leave characteristic signatures in mitochondrial ‘‘mismatch distributions.”
Consequently, these distributions can inform us about the history of changes in population size. Here, I study a simple
model of population history that assumes that, ¢ generations before the present, a population grows (or shrinks)
suddenly from female size N, to female size N;. Although this model is simple, it often provides an accurate description
of data generated by complex population histories. I develop statistical methods that estimate 8, = 2uNy, 6; = 2uN,,
and T = 2ut (where u is the mutation rate), and place a confidence region around these estimates. These estimators
are well behaved, and insensitive to simplifying assumptions. Finally, I apply these methods to published mitochondrial
data, and infer that a major expansion of the human population occurred during the late Pleistocene.
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It is remarkable that genetic data can inform us about de-
mographic changes that occurred 100,000 yr ago. The pos-
sibility exists because genetic differences between individ-
uals measure the genealogical distance between them, and
genealogical distances tend to increase with population size.
Two random individuals are more likely to be siblings (con-
nected by a short genealogy) in a population of 10 than in
one of 10 million. Consequently, a population’s history is
written in its genes.

The question is, How can this record best be deciphered?
Geneticists have been relating various genetic statistics to
population size for many years (Wright 1931), but the clas-
sical methods do not make adequate use of modern molecular
data. In principle, the most powerful methods are those that
base inference on the lengths of branches in a phylogenetic
tree (Felsenstein 1992). Unfortunately, these methods pose
challenging numerical problems, and have not yet been im-
plemented for the case of a nonstationary population.

Instead of sorting through phylogenetic trees, one can also
work with the relative frequencies of pairs of individuals in
a sample who differ by i nucleotide (or restriction) sites,
where i = 0, 1, ... (Slatkin and Hudson 1991; Rogers and
Harpending 1992). The frequency distribution of such dif-
ferences has been called the ‘‘distribution of pairwise genetic
differences” and the ‘““mismatch distribution’> (Hartl and
Clark 1989; Harpending et al. 1993). For brevity, I adopt the
latter term here. Analysis of the mismatch distribution may
not be optimal, but it is fast and will be shown to have
satisfactory statistical properties.

The sections that follow (1) introduce the model of pop-
ulation history that underlies the analysis, (2) develop meth-
ods of point and of interval estimation, (3) investigate their
behavior with simulated data, (4) defend these results against
various criticisms, and (5) discuss their implications for the
debate about modern human origins.

THE MODEL OF SUDDEN EXPANSION

Analysis is based on a simplified model of population his-
tory that Harpending and I (Rogers and Harpending 1992)
have called the model of ‘“‘sudden expansion’: An initial
population of female size N, is at equilibrium between the
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effects of mutation and genetic drift, then grows (or shrinks)
quickly to a new female size, N, and is observed ¢ generations
later. Only the female population sizes matter because the
mitochondria of males are not transmitted to offspring. Strict-
ly speaking, N, and N, refer not to the actual numbers of
females but to their ‘‘effective number,”” defined as the re-
ciprocal of the probability that two random individuals have
the same mother.

This model of demographic history is unrealistically sim-
ple. Its value results from three features of the dynamics of
the mismatch distribution (Rogers and Harpending 1992):
First, after a population decreases to a small size, conver-
gence to the new equilibrium is rapid. This implies that ‘“‘bot-
tlenecks,” or temporary reductions in population size,
amount to growth from an equilibrium population unless the
bottleneck is very brief. Thus, it is often reasonable to assume
that the pre-expansion population was at equilibrium. Second,
after a population grows large, convergence to the new equi-
librium is exceedingly slow. Third, an initial expansion will
obscure the effects of later expansions (and even those of
minor bottlenecks) for a very long time. Throughout this
extended period, the signature of the original expansion dom-
inates the mismatch distribution. Consequently, the model of
sudden expansion provides a good fit to data even when the
true story is one of continued exponential growth (Rogers
and Harpending 1992).

This model reduces population history to three parameters:
Ny, Ny, and ¢. Unfortunately, the effect of each is confounded
with u,the sum of per-nucleotide mutation rates in the region
of DNA under study. Thus, the mismatch distribution can
inform us only about three composite parameters, 8o = 2uN,
0, = 2uN,, and 7 = 2ut. These parameters measure female
population size in units of 1/2u individuals and time in units
of 1/2u generations.

ESTIMATION BY THE METHOD OF MOMENTS

The estimators proposed here are obtained by fitting the
empirical mean and variance to their theoretical counterparts.
This procedure, called the method of moments, is widely used
and usually successful. However, this is no basis for confi-
dence here. Method of moments estimators are ordinarily
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Fic. 1. Fit of the model to data. F; is the relative frequency of

pairs of individuals that differ by i restriction sites. The circles
show the empirical distribution of Cann et al. (1987), based on their
figure 1. The solid line is the theoretical distribution fit using equa-
tions (2) and (3).

applied to data with statistically independent observations.
The observations that contribute to an empirical mismatch
distribution, however, are far from independent: each pair of
individuals is correlated to a greater or lesser degree with
every other pair. Thus, later sections will use computer sim-
ulations to show that the statistics introduced here are in fact
useful as estimators. In the meantime, the argument of this
present section is intended to motivate these estimators, not
to justify them.

The expectation of the rth power of a random variable is
called its rth moment about zero. The method of moments
estimates parameters by equating observed with theoretical
moments, and solving the resulting equations. With three
parameters to estimate, three equations are required. Thus,
the straightforward approach would equate the first three the-
oretical moments with their empirical analogues. However,
this approach requires numerical methods that often fail to
converge. Better estimators are obtained from a reduced mod-
el obtained by letting 6;—. This is a useful simplification
because the case in which 6;— closely approximates that
in which 8, is merely large (Rogers and Harpending 1992).
It also applies exactly to pairs of individuals drawn from
separate populations that have not exchanged migrants for T
generations.

Let Gi(7) denote the probability that two such individuals
differ by i nucleotide (or restriction) sites. Letting 6;— in
Rogers and Harpending’s (1992) equation (4) gives

0} L1+ 6, J rie
1+ 60)*1 3\ 6 Vi

The moment generating function, obtained from this expres-
sion or from Li’s (1977, eq. 2) probability generating func-
tion, is

Gi(n) = ey

ze-1-¢9)
1+ z6,(1 — zed)~

Standard methods (Kendall and Stuart 1977, eq. 3.18) provide
the first two moments about zero:

6 + T

oz, 1) =

My =

My = 0%+ 6 + 7+ ui
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FiG. 2. Quantiles of #. One-thousand data sets were simulated at

each of several values of 7, and each was used to estimate the
model’s parameters. The bold dots indicate points at which ¥ = 7.
The solid line is the median, the dashed lines enclose the central
50% of the distribution, and the dotted lines the central 95%. Each
simulated data set was generated using the coalescent algorithm
with 6, = 1, 6; = 500, and N = 147.

Setting the observed mean, m, and variance, v, equal to m =
p and v = pw, — pf leads to two statistics,

é():

#=m— b, 3)

v — m, 2)

which I propose to interpret as estimators. In practice, I set
Bp=0if v <m, and 4 = 0 if m < §,.

To illustrate the method, I use the mitochondrial mismatch
distribution from the world human sample of Cann et al.
(1987, fig. 1). Figure 1 shows that the method provides an
excellent description of the data. The estimates presented
there are similar to the least squares estimates of Rogers and
Harpending (1992). The fit of the theoretical curve should
not, however, be interpreted as support for my proposal that

B, and # be interpreted as estimators—many other two-pa-
rameter functions would fit as well. The case in favor of these
statistics is made in the section that follows.

Statistical Properties of Point Estimates

To determine the statistical properties of 8, and #, I used
the coalescent algorithm (Hudson 1990) to generate 1000
simulated data sets at each of a wide variety of parameter
values. In order to allow for changes in population size, I
used a modified version of the coalescent algorithm, which
is described elsewhere (Rogers in press). I estimated 6, and
7 from each simulated data set, thus obtaining an estimate of
the sampling distribution of the estimators for each set of
parameter values.

Figure 2 shows how the sampling distribution of #
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Fic. 3. Quantiles of 6, One-thousand data sets were simulated at

each of several values of 6, and each was used to estimate the
model’s three parameters. In each run, ; = 1000, T = 7, and N =
147. The lines and bold dots are interpreted as in figure 2.

changes in response to variation in the underlying parameter
7. If 2 is in fact an estimator of 7, we would expect the
median of 4 (shown as a solid line in the figure) to increase
in response to increases in 7. This is indeed the case. An
ideal estimator should also have a relatively narrow distri-
bution at each value of 7. The dashed and dotted lines show
that 4 also satisfies this test. The dashed lines enclose the
central 50% of the distribution, and the dotted lines the
central 95%. Both sets of lines enclose a relatively narrow
interval about the median. In all of these respects, 7 behaves
as an estimator of 7.

Figure 3 performs a similar analysis on 8, and shows it
to perform well as an estimator when 6y > 1. The distribution
is tightly centered about the bold dots, showing that b is rich
in information and nearly unbiased when §, > 1. But when
6y < 1, the upper quantiles of log;g 8, are horizontal, while
the median and lower quantiles of 8, equal zero. Thus, an
estimate of 8, ~ 1 is equally consistent with the hypotheses
that 8, = 1 and that 8, = 0. Although 8, will always allow
us to place an upper bound on 6, it can provide no lower
bound unless 6, is much greater than one. This is no serious
problem; it means only that when the estimate is near unity,
the confidence interval will reach all the way to zero.

But what about 6;? We have no estimate of this parameter,
but Harpending has shown that empirical distributions tend
to be ‘“‘smooth” when 8 is large and 6, is much smaller than
T ; otherwise, they tend to be “‘rough’ (Harpending et al.
1993; Harpending 1994). Thus, a measure of roughness may
provide information about 6;. Harpending et al. measure
roughness by the sum of squared differences between suc-
cessive entries of the empirical mismatch distribution. My
own simulations suggest that this statistic is less informative
than another measure of roughness, the mean squared error
(MSE ) between the observed and fitted mismatch distribu-
tions. Rather than calculating the fit using equation 1, which
assumes that 6;—, I use the full three-parameter equation
(Rogers and Harpending 1992, eq. 4), with 8, = F3! — 1,
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FiG. 4. Quantiles of log,(MSE. Quartiles were estimated from
1000 data sets simulated at each of several values of ;. In each
run, 8, = 1, 1 = 7, and N = 147. The lines are interpreted as in
figure 2.

where F is the relative frequency in the data of pairs of
individuals that differ by zero sites. This approach was sug-
gested by Rogers and Harpending, and usually provides a
better fit when F, is far from zero. The quantiles of the
sampling distribution of log;oMSE are plotted against 6, in
figure 4, and verify that this statistic contains information
about 6;.

This section has shown that the statistics presented above
contain information about the parameters they are intended
to estimate. I turn next to the task of constructing a confidence
region.

CONFIDENCE REGIONS

In this section, I ask which parameter values can be rejected
by the data, and which cannot. The set of parameter values
that cannot be rejected will be interpreted as a confidence
region. This procedure is justified by the very definition of
a confidence region. A 95% confidence region is a set of
parameter values constructed by any procedure that guar-
antees the following property (Kendall and Stuart 1979, p.
110): If, each time we construct a 95% confidence region,
we assert that it includes the true parameter value, we will
in the long run be correct 95% of the time (and incorrect 5%
of the time). One way to construct such a region is to define
some statistical test whose outcome depends only on the data
and the parameters of interest. The set of parameter values
that cannot be rejected at significance level a will constitute
a 100 X (1 — a)% confidence region.

There are innumerable ways to construct such a test, and
each will lead to a valid confidence region. However, some
are more useful than others. To make my confidence intervals
small, I have tried to construct a test whose region of ac-
ceptance A is small, subject to the constraint that there be a
fixed probability 1 — « that an observation will fall within
it. This requires that A be chosen so that all points along its
boundary have equal probability density. In other words, the
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region of acceptance should be defined by one of the contour
lines of the density function. When the distribution is mul-
tivariate normal, points of equal density also have equal val-
ues of the Mahalanobis distance,

DX)=X-MTC X - M)

where X is a vector of observations; M; the corresponding
vector of mean values; C, the covariance matrix; and the
superscript T indicates the matrix transpose. This suggests a
procedure for constructing small confidence intervals from
normal data: For each set of parameter values, the first step
would estimate M and C from simulated data. The second
would calculate D both from the real data and also from each
simulated data set. The parameter values could be rejected
at the 5% level if less than 5% of the simulated distances
were as large as the observed distance.

Unfortunately, this test generates confidence intervals that
are disappointingly large, apparently because the probability
distribution is far from multivariate normal. Graphical anal-

ysis indicates that log;o8, and # are approximately bivariate
normal, and that the marginal distribution of log;(MSE is
also approximately normal. But the distribution is far from
normal when the three variables are considered together.
Therefore, I use a modified procedure that exploits the bi-

variate normality of log fy,and # but does not assume full
multivariate normality. The modified test is performed as
follows:

1. Use 1000 simulated data sets to estimate M and C as

above, but include only two variables, log;o0, and %.

2. Define the Mahalanobis distance D using only these two
variables. In this calculation, I use the algorithm de-
scribed by Dongarra et al. (1979, pp. 8.8-8.9)..

3. Count the number n of simulated data sets for which
the simulated D is at least as large as the observed D,
and the simulated MSE is at least as small as the ob-
served MSE, and reject if n/1000 = 0.05.

This test uses the approximately normal distribution of

log 08, and # to define a relatively small region of acceptance,
and then reduces that region still further by imposing an
additional condition involving the MSE. As figure 4 shows,
the MSE tends to be smallest in data from populations that
have grown. Thus, the test is more appropriate for expanded
than for equilbrium populations, producing a narrower con-
fidence region in the former case than in the latter.

This choice is sensible because the behavior of the method
with data from equilibrium populations is not very important.
Equilibrium populations produce mismatch distributions that
are extremely ragged, and not at all like the corresponding
theoretical curves (Slatkin and Hudson 1991; Rogers and
Harpending 1992). The estimators developed here should
work poorly with such data anyway. Mismatch distributions
from equilibrium populations can be recognized by their
roughness (Harpending et al. 1993; Harpending 1994), and
I don’t expect the present methods to be applied to such data
anyway. Thus, it makes sense to sacrifice precision with equi-
librium populations in order to gain precision with expanded
populations.

To evaluate this method for producing confidence regions,
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FiG. 5. Ninety-five percent confidence region for a simulated pop-

ulation with T = 4. A data set of size N = 147 was simulated
assuming that 6, = 1, 8, = 500, and T = 4, and a confidence region
was then generated as described in the text. Open circles represent
points outside the 95% confidence region; filled circles represent
points within.

I simulated data under several different assumptions and con-
structed confidence regions for each. The first of these, shown
in figure 5, is based on data for which 6, = 1, 8; = 500, and
7 = 4. Each panel there considers a different hypothesis about
the magnitude of the population expansion. At each point in
the ‘‘no-growth’’ panel, 6; = 6y, which leaves T undefined.
Thus, there is only one parameter to vary, 6,. The eight open
circles indicate that eight different values of 6y were consid-
ered and rejected. Thus, the method correctly rejects the hy-
pothesis of no growth. The “tenfold growth’’ panel in figure
5 entertains the hypothesis that the population increased in
size by a factor of ten, so that 6; = 100,. Here, there are two
free parameters, so a rectangular matrix of parameter values
was considered. All were rejected. The hypothesis of 100-
fold growth was also (correctly) rejected. In the ““103-fold
growth” panel, we see for the first time a new symbol, the
filled circle, which indicates a set of parameter values that
was not rejected. The 95% confidence region is defined by
the filled circles in the various panels. Note that the confi-
dence region is narrow, and includes the true parameter val-
ues.
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Fic. 6. Ninety-five percent confidence region for a simulated pop-
ulation with T = 12. A data set of size N = 147 was' simulated
assuming that 6, = 1, 8; = 500, and 7 = 12, and a confidence
region was then generated as described in the text. Open circles
represent points outside the 95% confidence region; filled circles
represent points within.

The confidence interval in figure 6 is based on data for
which the true value of T is 12. Once again, the confidence
interval is small and includes the true parameter values.

Figure 7 shows a confidence region for a case in which I
expect the method to work poorly—that of an equilibrium
population. Note that there are closed circles in each panel,
indicating that no value of growth (6,/8,) is excluded. Neither
does the confidence region exclude any value of 7. Thus, it
informs us neither about the amount of growth that has oc-
curred, nor about the time of this growth. This poor perfor-
mance agrees with my low expectations for equilibrium data.
I was surprised, however, by the relatively narrow (and ac-
curate) bound on 6. The method provides some useful in-
formation even with worst-case data.

In summary, it appears that the present method produces
narrow confidence regions when applied to data from pop-
ulations that have expanded. It does not misinform us even
when applied to worst-case data.

A Confidence Region for Human Data

Figure 8 shows a confidence region calculated from the
Cann-Stoneking-Wilson data shown in figure 1. The first three
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Fic. 7. Ninety-five percent confidence region from a simulated
equilibrium population. A data set of size N = 147 was simulated
assuming that the population was at equilibrium with 6 = 3.1623,
and a confidence region was then estimated as described in the text.
Open circles represent points outside the 95% confidence region;
filled circles represent points within.

panels, corresponding to no growth, 10-fold growth, and 100-
fold growth, contain only the open circles that indicate re-
jected hypotheses. Thus, the confidence region indicates that
the human population expanded by more than 100-fold. It
places no upper limit on the magnitude of growth, but does
place rather narrow limits on the other parameters: 6, < 10,
and 4 < 1 < 9.

Sensitivity to Simplifying Assumptions

Before discussing what this confidence region implies, we
should consider the possibility that it is unreliable. There are
several causes for concern.

The Model of Sudden Expansion Is Not an Accurate De-
scription of Population History.—The theoretical mismatch
distribution is remarkably insensitive to violations of the
model of sudden expansion. This was demonstrated by Rog-
ers and Harpending (1992), whose results were summarized
in the second section of the present paper. When an initial
expansion is followed by later expansions or minor bottle-
necks of population size, the theoretical mismatch distribu-
tion is affected only slightly. The empirical mismatch dis-
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Fic. 8. Ninety-five percent confidence region for the CSW data.

Large filled circles indicate points within the 95% confidence re-
gion, and open circles indicate points outside of the confidence
region. 10*-fold growth means that 6,/6, = 10*. Data are from Cann
et al. (1987).

tribution is also robust when the initial population is small,
and is not subdivided (Rogers in press).

Mutation Rates Vary Across Nucleotide Sites.—Mutation is
assumed to follow Kimura’s (1971) model of ‘‘infinite sites,”’
which implies that no nucleotide site mutates more than once.
However, several of the sites studied have clearly mutated
repeatedly (Kocher and Wilson 1991). This suggests that
some sites may mutate faster than others, a possible problem
since rate variation can generate signatures that mimic those
produced by population growth (R. Lundstrom MS). How-
ever, [ have shown elsewhere (Rogers 1992) that this probably
introduces only a negligible error of about 3% in the expected
number of site differences between pairs of individuals in
human data. This suggests that little error is introduced into
the theoretical curves, and possibly that the empirical curves
will be similarly unaffected. Further work is needed on this
point.

Real Populations Are Subdivided and Do Not Mate at Ran-
dom.—The statistical methods assume random mating. Yet I
apply them to the human population, which, far from mating
at random, is divided into a large number of partially isolated
subdivisions. This application can be defended only to the
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TaBLE 1. Theoretical mismatch distributions in a subdivided and
a randomly mating population. The subdivided and the randomly
mating populations both began at time 0 as randomly mating pop-
ulations at equilibrium with 6, = 1, which then grew suddenly by
a factor of 200. Both are observed at time T = 8. At time O the
subdivided population split into two isolated subpopulations. Col-
umn 2 contains the distribution for pairs within subdivisions, col-
umn 3 that for pairs from different subdivisions, column 4 that for
pairs drawn at random from the entire subdivided population, and
column 5 that for pairs from the randomly mating population.

Subdivided

Random

i Within Btw Total mating
0 0.0101 0.0002 0.0051 0.0051
1 0.0111 0.0014 0.0063 0.0063
2 0.0152 0.0061 0.0107 0.0106
3 0.0252 0.0174 0.0214 0.0213
4 0.0430 0.0373 0.0402 0.0402
5 0.0672 0.0645 0.0659 0.0658
6 0.0926 0.0933 0.0930 0.0930
7 0.1126 0.1164 0.1145 0.1145
8 0.1220 0.1280 0.1250 0.1250
9 0.1190 0.1260 0.1225 0.1225
10 0.1057 0.1127 0.1091 0.1092
11 0.0864 0.0924 0.0893 0.0894
12 0.0655 0.0703 0.0678 0.0679
13 0.0464 0.0499 0.0482 0.0482
14 0.0310 0.0334 0.0322 0.0322
15 0.0197 0.0212 0.0204 0.0205
16 0.0119 0.0129 0.0124 0.0124
17 0.0069 0.0075 0.0072 0.0072
18 0.0039 0.0042 0.0041 0.0041
19 0.0021 0.0023 0.0022 0.0022
20 0.0011 0.0012 0.0012 0.0012

extent that the mismatch distribution is insensitive to sub-
division. I treat this problem in detail elsewhere (Rogers in
press) and deal here only with the effect of one form of
subdivision on the theoretical mismatch distribution.
Consider a population that initially mates at random and
is at equilibrium with size 8,, but then splits into K completely
isolated populations of size 6;/K which are observed 7 units
of mutational time later. Pairs of individuals drawn at random
from the total population differ by i sites with probability

H(1) = F;(n/K + (1 — 1/K)G(7), “)

where F(7) is the mismatch distribution for pairs within a
single randomly mating population of size 6,/K (Rogers and
Harpending 1992, eq 4), and G(7) the mismatch distribution
for pairs from separate, completely isolated populations (eq.
1).

Note that H; = F; when K = 1, and that H;—>G,; as K—».
H; falls between these limits when K takes intermediate val-
ues. But we already know that G; = F; when 6,/K is large
and 0, small. This is illustrated below and is also illustrated
by the close fit of the two-parameter model to the data in
figure 1. If G; = F;, then equation (4) implies that H; = F;
whatever the value of K. Thus, the theory for a randomly
mating population should hold approximately even when sub-
divisions are completely isolated. When subdivisions are in-
completely isolated, the random mating approximation
should be even better.

Table 1 illustrates this result for the case of a population
with two completely isolated subdivisions. The subdivided
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population is compared with one of equal size that mates at
random. The two populations have identical demographic
histories except that one has been subdivided for T units of
mutational time. The table shows that subdivision has a re-
markably small effect. Indeed, the effect is entirely invisible
when these distributions are displayed graphically. The sim-
ilarity of these distributions is even more remarkable in view
of my extreme assumption that there was no gene flow at all
between subdivisions. With gene flow, the two distributions
would be even more similar.

This shows that population structure has a negligible effect
on the theoretical distribution in one important case: that in
which 6, is small, 6,/K is large, and the time of population
growth coincides with the time of subdivision. Elsewhere
(Rogers in press), I show that. in this case, the effect on the
empirical distribution is similarly small. The effect is not so
small when the initial population is subdivided: subdivision
makes the upper bound on 6, even smaller.

The Sample Is Less Than Ideal.—My estimates are based
on the sample of Cann et al. (1987), which has been criticized
because its ‘“‘African’’ component actually consists of Amer-
ican blacks (Spuhler 1988; Kriiger and Vogel 1989). Yet,
similar results are obtained from many other samples (Har-
pending et al. 1993; Sherry et al. 1994; Harpending 1994).
Thus, the main conclusions of this analysis cannot be attrib-
uted to problems with this particular sample.

Pairs of Individuals in the Sample Are Not Independent.—
Ideally, the estimators developed here should be applied to
an empirical distribution based on statistically independent
pairs of individuals. Unfortunately, this is impossible. The
pairs of individuals studied here are correlated both because
of genealogical relationships and because each individual
participates in many different pairings. Consequently, there
is no reason a priori to expect these estimators to perform
well at all. Yet the simulations show that they do. The be-
tween-pair correlations are present not only in the CSW data,
but also in the simulated data. Figures 2—4 show that the
univariate estimators are useful, correlations notwithstand-
ing, and figures 5—7 show that the confidence region is also
useful.

In summary, the analysis makes several unrealistic sim-
plifying assumptions, but for each there is reason to suppose
that the violated assumption probably has no large effect on
the estimates.

MODERN HUMAN ORIGINS

In this final section, I consider what the results obtained
above imply about the origin of modern humans. Figure 8
indicates that the lower bound on the confidence interval for
T is between 4 and 5, whereas the upper bound is between
8 and 9. On a conservative interpretation, we can conclude
that the ancestors of the present human population expanded
dramatically between 4 and 9 units of mutational time ago.
The analysis places a lower bound, but no upper bound on
the magnitude of the expansion: the increase must have been
more than 100-fold. It should not be inferred that this increase
occurred as the model assumes—all at once. Data like those
observed could also have been produced by other trajectories
of growth, including continued exponential growth beginning
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at around T = 6 (Slatkin and Hudson 1991; Rogers and Har-
pending 1992). The results imply that substantial population
growth occurred in the neighborhood of 7 = 6, but say noth-
ing about the later history of population growth.

To re-express T in years, we must divide by 2u (twice the
mutation rate) and multiply by the length of a generation,
say, 25 yr. Unfortunately, the mutation rate is not known with
great accuracy. The rate of human mitochondrial nucleotide
divergence has been variously estimated at 2% and 4% per
million years (Cann et al. 1987), but the confidence intervals
around these estimates are unknown. The two estimates place
uat 7.5 X 104 and 1.5 X 1073, respectively (Rogers and
Harpending 1992). If we knew the larger estimate of u to be
correct, then each unit of the mutational time scale would
correspond to 8333 yr, and the confidence interval for T would
correspond to 33,000—75,000 yr B.P. The smaller estimate of
u doubles these values, giving 66,000-150,000 B.P. Neither
of these is a true confidence interval, because neither takes
proper account of the sampling distribution of u. Calculation
of a true confidence interval for ¢+ must await better infor-
mation about the sampling distribution of u.

Similar comments apply to the estimates of 6,. The con-
fidence region says that 8, < 10. With the smaller estimate
of u, this gives approximately Ny < 7000, in good agreement
both with earlier estimates of our long-term effective pop-
ulation size and with earlier estimates of N, (reviewed by
Rogers and Jorde 1995). The upper bound on N, is remark-
ably small and may be biased downward. If the wave in the
empirical distribution resulted from a very brief bottleneck,
the pre-expansion population may have been far from equi-

librium. This could cause a downward bias in 6,, and may
account for the small estimates (Rogers and Harpending
1992). Further simulations are needed to check this conjec-
ture. An opposite bias may be introduced by the assumption
of random mating—if the initial population were structured,
then the upper bound inferred here would be too high (Rogers
in press).

Takahata (1993) used high genetic diversity at the HLA
locus to argue that the human population has not passed
through any small bottleneck. However, the bottlenecks he
is excluding are smaller than the 7000 females in the initial
population inferred here. Thus, Takahata’s results are con-
sistent with mine (Rogers and Jorde 1995).

The wave in the mismatch distribution might also reflect
natural selection rather than a population expansion. If a fa-
vorable mutation occurred in a mitochondrion, the carriers
of that mutation might increase in number until the new allele
was fixed. Thus, our “‘population” might consist of the fe-
male carriers of a new allele. However, Harpending et al.
(1993) argued that this interpretation is inconsistent with re-
sults from between-population mismatch distributions.

Furthermore, the archeological record provides some sup-
port for the view that an expansion did occur. Throughout
much of the Pleistocene, stone tools were relatively uniform
over vast distances and spans of time. But at around 40,000
B.P. new types of stone tools appear throughout most of the
Old World, and thereafter technological change is faster.
When skeletal remains are found at these later sites, they are
almost invariably those of anatomically modern humans
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(Klein 1992). These observations have led some prehistorians
to propose the ‘‘replacement model” of modern human or-
igins, which holds that modern humans evolved in Africa
some 50,000-100,000 yr ago, and then spread throughout the
world, replacing earlier peoples as they went (Stringer and
Andrews 1988). The expansion that this model proposes oc-
curs at approximately the same time as that implied by the
mitochondrial data.

The competing ‘‘multiregional model” (Wolpoff 1989)
holds that modern humans evolved in a widespread popu-
lation that inhabited much of Europe, Africa, and Asia. Fa-
vorable mutations arising in one place spread throughout the
world by gene flow, not by the replacement of whole pop-
ulations. This hypothesis does not require a population ex-
pansion, but neither does it preclude one. It is possible that
the origin of modern humans involved some adaptation that
allowed our ancestors to inhabit the landscape more densely.
If so, a population expansion could have occurred even under
the multiregional model. However, it is hard to imagine that
this in-place expansion could have been as large as the sev-
eral-hundred-fold expansion inferred here. To this extent, ev-
idence for a population expansion weighs against the mul-
tiregional model. Furthermore, the multiregional model im-
plies that modern humans evolved in a population that
spanned several continents, yet the present results imply that
this population contained fewer than 7000 females. And this
number becomes even smaller if population structure is in-
troduced into the analysis (Rogers in press). It is implausible
that a population this small could have spanned three con-
tinents and still been connected by gene flow. Thus, the small
estimate of N, also weighs against the multiregional model.

Finally, the wave the the mismatch distribution could also
have been produced by a separation of the human population
into several relatively isolated subpopulations. Analysis of
between-group mismatch distributions indicates that this may
well be the case (Harpending et al. 1993; Gibbons 1993).
This interpretation of the data is also inconsistent with the
multiregional model since the date of the event inferred here
is much later than the original expansion of Homo erectus
populations throughout Europe and Asia.
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